Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intestinal epithelial cells are exposed to luminal bacterial threat and require adequate defense mechanisms to ensure host protection and epithelium regeneration against possible deleterious damage. Differentiated intestinal epithelial cells produce antimicrobial and regenerative components that protect against such challenges. Few intestinal specific transcription factors have been identified to control the switching from repression to activation of this class of gene. Herein, we show that gene transcription of some regenerating islet-derived (REG) family members is dependent on the transcription factor GATA-4. Silencing of GATA-4 expression in cultured intestinal epithelial cells identified Reg3β as a target gene using an unbiased approach of gene expression profiling. Co-transfection and RNA interference assays identified complex GATA-4-interactive transcriptional components required for the activation or repression of Reg3β gene activity. Conditional deletion of Gata4 in the mouse intestinal epithelium supported its regulatory role for Reg1, Reg3α, Reg3β and Reg3γ genes. Reg1 dramatic down-modulation of expression in Gata4 conditional null mice was associated with a significant decrease in intestinal epithelial cell migration. Altogether, these results identify a novel and complex role for GATA-4 in the regulation of REG family members gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagrm.2015.10.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!