Why are some introduced species more successful at establishing and spreading than others? Until now, characteristics of extant species have been intensively investigated to answer this question. We propose to gain new insights on species invasiveness by exploring the long-term biogeographic and evolutionary history of lineages. We exemplify our approach using one of the best-studied invasive plant genera, Pinus. We notably estimated the historical biogeography of pines and the rates of trait evolution in pines. These estimates were analysed with regard to species invasiveness status. The results revealed that currently invasive species belong to lineages that were particularly successful at colonizing new regions in the past. We also showed that highly mobile lineages had faster rates of niche evolution, but that these rates are poor proxies for species adaptive potential in invaded regions (estimated by niche shift among native and invaded regions). In summary, working at the interface of ecology, historical biogeography and evolutionary history offers stimulating perspectives to improve our understanding of the drivers of invasion success.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.13700DOI Listing

Publication Analysis

Top Keywords

historical biogeography
12
species invasiveness
8
evolutionary history
8
invaded regions
8
species
6
legacy historical
4
biogeography shape
4
shape current
4
current invasiveness
4
invasiveness pines?
4

Similar Publications

Article Synopsis
  • The study explores how intercontinental movements of certain plant lineages (Hydrangeaceae and Loasaceae) may promote ecological opportunities and species diversity.
  • Researchers reconstructed a phylogeny using molecular data and analyzed speciation rates, finding that while some clades showed increased diversification, it wasn't linked to new continental colonization.
  • The findings suggest that climate change in the Miocene played a more significant role in species diversification rather than dispersal across continents, indicating that changes in habitats drove evolutionary changes instead of location shifts.
View Article and Find Full Text PDF

Animal translocations provide striking examples of the human footprint on biodiversity. Combining continental-wide genomic and DNA-barcoding analyses, we reconstructed the historical biogeography of the Asian black-spined toad (Duttaphrynus melanostictus), a toxic commensal amphibian that currently threatens two biodiversity hotspots through biological invasions (Wallacea and Madagascar). The results emphasize a complex diversification shaped by speciation and mitochondrial introgression that comprises two distinct species.

View Article and Find Full Text PDF

Introduction: The gastrointestinal microbiota profoundly influences the health and productivity of animals. This study aimed to characterize microbial community structures of the mouth, gastrointestinal tract (GIT), and feces of cattle.

Methods: Samples were collected from 18 Akaushi crossbred steers at harvest from multiple locations, including the oral cavity, rumen, abomasum, duodenum, jejunum, ileum, cecum, spiral colon, distal colon, and feces.

View Article and Find Full Text PDF

Suture zones, speciation, and evolution.

Evolution

December 2024

Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, 10115, Berlin, Germany.

In the more than 50 years since the initial conceptualization of the suture zone, little work has been done to take full advantage of the comparative capability of these geographic regions. During this time, great advances have been made in hybrid zone research that have provided invaluable insight in speciation and evolution. Hybrid zones have long been recognized to be "windows to the evolutionary process".

View Article and Find Full Text PDF

Historical and future heat-related mortality in Portugal's Alentejo region.

BMC Public Health

December 2024

Rui Nabeiro Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Universidade de Évora, Largo dos Colegiais, Évora, 7004-516, Portugal.

Background: The increased severity of extreme weather and anticipated climate change has intensified heat stress-related mortality worldwide. This study examines the historical short-term effects of heat on mortality in Alentejo, Portugal's warmest region, and projects it up to the end of the century.

Methods: Using data from 1980 to 2015 during warm seasons (May-September), the association between daily mortality by all-causes and mean temperature was examined following a case time series design, applied at both regional and subregional scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!