On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model.

J Mech Behav Biomed Mater

Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712, USA. Electronic address:

Published: February 2016

Heart valve interstitial cells (VICs) play a critical role in the maintenance and pathophysiology of heart valve tissues. Normally quiescent in the adult, VICs can become activated in periods of growth and disease. When activated, VICs exhibit increased levels of cytokines and extracellular matrix (ECM) synthesis, and upregulated expression and strong contraction of α-smooth muscle actin (α-SMA) fibers. However, it remains unknown how expression and contraction of the α-SMA fibers, which vary among different VIC types, contribute to the overall VIC mechanical responses, including the nucleus and cytoskeleton contributions. In the present study, we developed a novel solid-mixture model for VIC biomechanical behavior that incorporated 1) the underlying cytoskeletal network, 2) the oriented α-SMA stress fibers with passive elastic and active contractile responses, 3) a finite deformable elastic nucleus. We implemented the model in a full 3D finite element simulation of a VIC based on known geometry. Moreover, we examined the respective mechanical responses of aortic and pulmonary VICs (AVICs and PVICs, respectively), which are known to have different levels of α-SMA expression levels and contractile behaviors. To calibrate the model, we simulated the combined mechanical responses of VICs in both micropipette aspiration (MA) and atomic force microscopy (AFM) experiments. These two states were chosen as the VICs were under significantly different mechanical loading conditions and activation states, with the α-SMA fibers inactivated in the MA studies while fully activated in the AFM studies. We also used the AFM to study the mechanical property of the nucleus. Our model predicted that the substantial differences found in stiffening of the AVIC compared to the PVICs was due to a 9 to 16 times stronger intrinsic AVIC α-SMA stress fiber contractile force. Model validation was done by simulating a traction force microscopy experiment to estimate the forces the VICs exert on the underlying substrate, and found good agreement with reported traction force microscopy results. Further, estimated nuclear stiffness for both AVICs and PVICs were similar and comparable to the literature, and were both unaffected by VIC activation level. These results suggest substantial functional differences between AVICs and PVICs at the subcellular level. Moreover, this first VIC computational biomechanical model is but a first step in developing a comprehensive, integrated view of the VIC pathophysiology and interactions with the valve ECM micro-environment based on simulation technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698364PMC
http://dx.doi.org/10.1016/j.jmbbm.2015.09.027DOI Listing

Publication Analysis

Top Keywords

heart valve
12
α-sma fibers
12
mechanical responses
12
avics pvics
12
force microscopy
12
stress fiber
8
fiber contractile
8
valve interstitial
8
interstitial cells
8
α-sma stress
8

Similar Publications

Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.

Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.

View Article and Find Full Text PDF

Background: Epicardial fat tissue (EFT) is an active organ that can affect cardiac function and structure through endocrine, paracrine, and proinflammatory mechanisms. We hypothesized that greater thickness of EFT may harm the recovery of left ventricular (LV) systolic function in patients with severe aortic stenosis (AS) and reduced LV ejection fraction (EF ≤ 50 %) undergoing transcatheter aortic valve implantation (TAVI).

Methods: A sixty six patients with severe AS and 20 % ≥ LVEF ≤ 50 % who underwent TAVI were included.

View Article and Find Full Text PDF

PDA-associated infective endocarditis with pulmonary artery perforation.

Pak J Med Sci

January 2025

Muhammad Ali Mumtaz, MD FACS. Tahir Heart Institute, Fazl-e-Omar Hospital, Chenab Nagar, District Chiniot, Pakistan.

Infective endocarditis used to frequently cause mortality in subjects having PDA before the advent of antibiotics and surgical ligation. It has been documented that clinically silent PDAs may cause infective complications of heart valves. We present case of an 18-years-old male who presented with palpitations and fever to our emergency department.

View Article and Find Full Text PDF

Background: This study aimed to assess right ventricular (RV) endocardial fibroelastosis (EFE) in fetuses with critical pulmonary stenosis (CPS) and pulmonary atresia with intact ventricular septum (PA-IVS) and to investigate the implications of RV EFE for circulatory outcomes.

Methods: Fetal echocardiographic data from July 2018 to January 2021 were collected. Three reviewers independently graded EFE based on the presence and extent of endocardial echogenicity.

View Article and Find Full Text PDF

Exploring the Impact of Clonal Hematopoiesis on Heart Failure and Remodeling in Aortic Stenosis.

JACC Adv

February 2025

Division of Cardiology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!