GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding.

Bioinformatics

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, Cambridge, MA 02138, USA.

Published: February 2016

Motivation: The majority of disease-associated variants identified in genome-wide association studies reside in noncoding regions of the genome with regulatory roles. Thus being able to interpret the functional consequence of a variant is essential for identifying causal variants in the analysis of genome-wide association studies.

Results: We present GERV (generative evaluation of regulatory variants), a novel computational method for predicting regulatory variants that affect transcription factor binding. GERV learns a k-mer-based generative model of transcription factor binding from ChIP-seq and DNase-seq data, and scores variants by computing the change of predicted ChIP-seq reads between the reference and alternate allele. The k-mers learned by GERV capture more sequence determinants of transcription factor binding than a motif-based approach alone, including both a transcription factor's canonical motif and associated co-factor motifs. We show that GERV outperforms existing methods in predicting single-nucleotide polymorphisms associated with allele-specific binding. GERV correctly predicts a validated causal variant among linked single-nucleotide polymorphisms and prioritizes the variants previously reported to modulate the binding of FOXA1 in breast cancer cell lines. Thus, GERV provides a powerful approach for functionally annotating and prioritizing causal variants for experimental follow-up analysis.

Availability And Implementation: The implementation of GERV and related data are available at http://gerv.csail.mit.edu/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860000PMC
http://dx.doi.org/10.1093/bioinformatics/btv565DOI Listing

Publication Analysis

Top Keywords

transcription factor
16
factor binding
16
regulatory variants
12
gerv
8
generative evaluation
8
evaluation regulatory
8
variants
8
genome-wide association
8
causal variants
8
binding gerv
8

Similar Publications

WNT4 promotes the symmetric fission of crypt in radiation-induced intestinal epithelial regeneration.

Cell Mol Biol Lett

December 2024

Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.

Background: Radiotherapy for pelvic malignant tumors inevitably causes intestinal tissue damage. The regeneration of intestinal epithelium after radiation injury relies mainly on crypt fission. However, little is known about the regulatory mechanisms of crypt fission events.

View Article and Find Full Text PDF

Multi-locus genome wide association study uncovers genetics of fresh seed dormancy in groundnut.

BMC Plant Biol

December 2024

Center of Excellence in Genomics & Systems Biology (CEGSB) and Centre for Pre-breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.

Pre-harvest sprouting (PHS) in groundnut leads to substantial yield losses and reduced seed quality, resulting in reduced market value of groundnuts. Breeding cultivars with 14-21 days of fresh seed dormancy (FSD) holds promise for precisely mitigating the yield and quality deterioration. In view of this, six multi-locus genome-wide association study (ML-GWAS) models alongside a single-locus GWAS (SL-GWAS) model were employed on a groundnut mini-core collection using multi season phenotyping and 58 K "Axiom_Arachis" array genotyping data.

View Article and Find Full Text PDF

GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean.

BMC Plant Biol

December 2024

Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.

View Article and Find Full Text PDF

Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.

Cell Mol Life Sci

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.

View Article and Find Full Text PDF

Gram-negative bacteria-driven increase of cytosolic phospholipase A2 leads to activation of Kupffer cells.

Cell Mol Life Sci

December 2024

Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.

Bacterial infections are prevalent and the major cause of morbidity and mortality in cirrhosis. Activation of human Kupffer cells (HKCs) from livers is essential for human innate immunity. Cytosolic phospholipase A2 (cPLA2) plays a crucial role in the control and balance of innate immune and inflammatory reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!