Histone modifications controlling native and induced neural stem cell identity.

Curr Opin Genet Dev

Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.

Published: October 2015

During development, neural progenitor cells (NPCs) that are capable of self-renewing maintain a proliferative cellular pool while generating all differentiated neural cell components. Although the genetic network of transcription factors (TFs) required for neural specification has been well characterized, the unique set of histone modifications that accompanies this process has only recently started to be investigated. In vitro neural differentiation of pluripotent stem cells is emerging as a powerful system to examine epigenetic programs. Deciphering the histone code and how it shapes the chromatin environment will reveal the intimate link between epigenetic changes and mechanisms for neural fate determination in the developing nervous system. Furthermore, it will offer a molecular framework for a stringent comparison between native and induced neural stem cells (iNSCs) generated by direct neural cell conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gde.2015.08.003DOI Listing

Publication Analysis

Top Keywords

histone modifications
8
native induced
8
neural
8
induced neural
8
neural stem
8
neural cell
8
stem cells
8
modifications controlling
4
controlling native
4
stem cell
4

Similar Publications

The Impact of Epigenetics on the Pathophysiology of Type 2 Diabetes and Associated Nephropathic Complications.

Indian J Endocrinol Metab

December 2024

Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Type 2 diabetes (T2D) is a long-term metabolic condition that presents considerable health challenges globally. As the disease progresses, the interplay between genetic, environmental, and lifestyle factors becomes increasingly evident, leading to complications. Epigenetics has emerged as a critical area of research, providing insights into how these factors can modify the expression and cellular behavior without altering the underlying DNA sequence.

View Article and Find Full Text PDF

In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes.

View Article and Find Full Text PDF

Histone bivalency in CNS development.

Genes Dev

January 2025

Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;

Neuronal maturation is guided by changes in the chromatin landscape that control developmental gene expression programs. Histone bivalency, the co-occurrence of activating and repressive histone modifications, has emerged as an epigenetic feature of developmentally regulated genes during neuronal maturation. Although initially associated with early embryonic development, recent studies have shown that histone bivalency also exists in differentiated and mature neurons.

View Article and Find Full Text PDF

Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.

View Article and Find Full Text PDF

SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!