This manuscript presents research results examining phosphorus (P) management in a soil–plant system for three variables: i) internal resources of soil available phosphorus, ii) cropping sequence, and iii) external input of phosphorus (manure, fertilizers). The research was conducted in long-term cropping sequences with oilseed rape (10 rotations) and maize (six rotations) over three consecutive growing seasons (2004/2005, 2005/2006, and 2006/2007) in a production farm on soils originated from Albic Luvisols in Poland. The soil available phosphorus pool, measured as calcium chloride extractable P (CCE-P), constituted 28% to 67% of the total phosphorus input (PTI) to the soil–plant system in the spring. Oilseed rape and maize dominant cropping sequences showed a significant potential to utilize the CCE-P pool within the soil profile. Cropping sequences containing oilseed rape significantly affected the CCE-P pool, and in turn contributed to the P(TI). The P(TI) uptake use efficiency was 50% on average. Therefore, the CCE-P pool should be taken into account as an important component of a sound and reliable phosphorus balance. The instability of the yield prediction, based on the P(TI), was mainly due to an imbalanced management of both farmyard manure and phosphorus fertilizer. Oilseed rape plants provide a significant positive impact on the CCE-P pool after harvest, improving the productive stability of the entire cropping sequence. This phenomenon was documented by the P(TI) increase during wheat cultivation following oilseed rape. The Unit Phosphorus Uptake index also showed a higher stability in oilseed rape cropping systems compared to rotations based on maize. Cropping sequences are a primary factor impacting phosphorus management. Judicious implementation of crop rotations can improve soil P resources, efficiency of crop P use, and crop yield and yield stability. Use of cropping sequences can reduce the need for external P sources such as farmyard manure and chemical fertilizers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2015.09.009 | DOI Listing |
Sci Adv
January 2025
College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Electronic address:
Canola (Brassica napus sp.), the most important oily seed product in the world, is affected largely by salinity and drought stresses due to its ability to be planted in arid and semiarid regions. Therefore, studying potent genes involved in salt/drought stress response in canola would help improve abiotic stress tolerance.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Biology, BNL 463, 50 Bell Ave, Upton NY 11973, USA.
In eukaryotes, Target of Rapamycin (TOR), a conserved protein sensor kinase, integrates diverse environmental cues, including growth factor signals, energy availability, and nutritional status, to direct cell growth. In plants, TOR is activated by light and sugars and regulates a wide range of cellular processes, including protein synthesis and metabolism. Fatty acid synthesis is key to membrane biogenesis that is required for cell growth.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India.
Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China.
The photosynthetic mechanism responsible for the differences in yield between different rapeseed varieties remains unclear, and there have been no consensus and definite conclusions about the relationship between photosynthesis and yield. Representation of the whole plant by measuring the photosynthetic performance at a single site may lead to biased results. In this study, we comprehensively analyzed the main photosynthetic organs of four high-yielding rapeseed varieties at the seedling, bud, flowering, and podding stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!