Do Plants Eavesdrop on Floral Scent Signals?

Trends Plant Sci

Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden.

Published: January 2016

Plants emit a diverse array of volatile organic compounds that can function as cues to other plants. Plants can use volatiles emitted by neighbors to gain information about their environment, and respond by adjusting their phenotype. Less is known about whether the many different volatile signals that plants emit are all equally likely to function as cues to other plants. We review evidence for the function of floral volatile signals and conclude that plants are as likely to perceive and respond to floral volatiles as to other, better-studied volatiles. We propose that eavesdropping on floral volatile cues is particularly likely to be adaptive because plants can respond to these cues by adjusting traits that directly affect pollination and mating.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tplants.2015.09.001DOI Listing

Publication Analysis

Top Keywords

plants
8
plants emit
8
function cues
8
cues plants
8
volatile signals
8
floral volatile
8
plants eavesdrop
4
floral
4
eavesdrop floral
4
floral scent
4

Similar Publications

The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.

View Article and Find Full Text PDF

Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome.

Genome Biol Evol

January 2025

Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA.

This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp.

View Article and Find Full Text PDF

Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.

View Article and Find Full Text PDF

Phytochemical composition, antioxidant and antimicrobial activities of Delile ex Godr flowers extracts.

Nat Prod Res

January 2025

Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.

The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!