Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tram stops in mixed traffic environments present a variety of safety, accessibility and transport efficiency challenges. In Melbourne, Australia the hundred year-old electric tram system is progressively being modernized to improve passenger accessibility. Platform stops, incorporating raised platforms for level entry into low floor trams, are being retro-fitted system-wide to replace older design stops. The aim of this study was to investigate the safety impacts of platform stops over older design stops (i.e. Melbourne safety zone tram stops) on pedestrians in the context of mixed traffic tram operation in Melbourne, using an advanced before-after crash analysis approach, the comparison group (CG) method. The CG method evaluates safety impacts by taking into account the general trends in safety and the unobserved factors at treatment and comparison sites that can alter the outcomes of a simple before-after analysis. The results showed that pedestrian-involved all injury crashes reduced by 43% after platform stop installation. This paper also explores a concern that the conventional CG method might underestimate safety impacts as a result of large differences in passenger stop use between treatment and comparison sites, suggesting differences in crash risk exposure. To adjust for this, a modified analysis explored crash rates (crash counts per 10,000 stop passengers) for each site. The adjusted results suggested greater reductions in pedestrian-involved crashes after platform stop installation: an 81% reduction in pedestrian-involved all injury crashes and 86% reduction in pedestrian-involved FSI crashes, both are significant at the 95% level. Overall, the results suggest that platform stops have considerable safety benefits for pedestrians. Implications for policy and areas for future research are explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2015.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!