Suppression of TGFβ and Angiogenesis by Type VII Collagen in Cutaneous SCC.

J Natl Cancer Inst

Centre for Cell Biology and Cutaneous Research, Blizard Institute (VLM, MPC, ZS, STM, MA, RC, EOT), Barts Cancer Institute (KM, KHD, JFM), Barts and the London School of Medicine and Dentistry and School of Biological and Chemical Sciences (CHB), Queen Mary University of London, London, UK; Department of Dermatology, St George Hospital, University of NSW, Sydney, NSW, Australia (DFM, MHK); St John's Institute of Dermatology, Kings College London (Guys Campus), London, UK (JAM); Department of Dermatology and MediCity Research Laboratory, University of Turku, and Turku University Hospital, Turku, Finland (AK, VMK); Department of Dermatology, University of Southern California, Los Angeles, CA (MC).

Published: January 2016

Background: Individuals with severe generalized recessive dystrophic epidermolysis bullosa (RDEB), an inherited blistering disorder caused by mutations in the COL7A1 gene, develop unexplained aggressive squamous cell carcinomas (SCC). Here we report that loss of type VII collagen (Col7) in SCC results in increased TGFβ signaling and angiogenesis in vitro and in vivo.

Methods: Stable knockdown (KD) of Col7 was established using shRNA, and cells were used in a mouse xenograft model. Angiogenesis was assessed by immunohistochemistry, endothelial tube-forming assays, and proteome arrays. Mouse and zebrafish models were used to examine the effect of recombinant Col7 on angiogenesis. Findings were confirmed in anonymized, archival human tissue: RDEB SCC tumors, non-EB SCC tumors, RDEB skin, normal skin; and two human RDEB SCC cell lines. The TGFβ pathway was examined using immunoblotting, immunohistochemistry, biochemical inhibition, and siRNA. All statistical tests were two-sided.

Results: Increased numbers of cross-cut blood vessels were observed in Col7 KD compared with control xenografts (n = 4 to 7 per group) and in RDEB tumors (n = 21) compared with sporadic SCC (n = 24, P < .001). Recombinant human Col7 reversed the increased SCC angiogenesis in Col7 KD xenografts in vivo (n = 7 per group, P = .04). Blocking the interaction between α2β1 integrin and Col7 increased TGFB1 mRNA expression 1.8-fold and p-Smad2 levels two-fold. Increased TGFβ signaling and VEGF expression were observed in Col7 KD xenografts (n = 4) compared with control (n = 4) and RDEB tumors (TGFβ markers, n = 6; VEGF, n = 17) compared with sporadic SCC (TGFβ markers, n = 6; VEGF, n = 21). Inhibition of TGFβ receptor signaling using siRNA resulted in decreased endothelial cell tube formation (n = 9 per group, mean tubes per well siC = 63.6, SD = 17.1; mean tubes per well siTβRII = 29.7, SD = 6.1, P = .02).

Conclusions: Type VII collagen suppresses TGFβ signaling and angiogenesis in cutaneous SCC. Patients with RDEB SCC may benefit from anti-angiogenic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djv293DOI Listing

Publication Analysis

Top Keywords

type vii
12
vii collagen
12
tgfβ signaling
12
rdeb scc
12
scc
11
cutaneous scc
8
col7
8
increased tgfβ
8
signaling angiogenesis
8
scc tumors
8

Similar Publications

Background: Antiplatelet drugs represent potential candidates for protecting the penumbral microcirculation during cerebral ischemia and improving the benefits of arterial recanalization in ischemic stroke. Yet while the efficacy of such adjuvant strategies has been shown to be highly time dependent, antiplatelet therapy at the acute phase of ischemic stroke cannot be envisioned until the diagnosis of stroke and its ischemic nature have been confirmed because of the presumed risk of worsening bleeding in case of intracranial hemorrhage (ICH). Here, we investigated this risk for 2 antiplatelet drugs currently being tested in clinical trials for ischemic stroke, glenzocimab and eptifibatide, in 2 mouse models of ICH.

View Article and Find Full Text PDF

The amylolytic susceptibility of starch-lipid complexes with different forms of crystallites has been studied extensively, but the fermentation properties of these complexes remain little understood. Hence, the fecal fermentation properties of starch-lipid complexes with V-type and V-type crystallites were investigated in the present study. Compared to V-type complexes, fermentation of V-type complexes caused more severe disruption to the crystallites and resulted in greater acid, reducing sugar, and short-chain fatty acids (SCFAs) production.

View Article and Find Full Text PDF

Single-cell analysis reveals ESX-1-mediated accumulation of permissive macrophages in infected mouse lungs.

Sci Adv

January 2025

Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA.

(MTB) ESX-1, a type VII secretion system, is a key virulence determinant contributing to MTB's survival within lung mononuclear phagocytes (MNPs), but its effect on MNP recruitment and differentiation remains unknown. Here, using multiple single-cell RNA sequencing techniques, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden.

View Article and Find Full Text PDF

Systems immunology integrates the complex endotypes of recessive dystrophic epidermolysis bullosa.

Nat Commun

January 2025

National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.

Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!