Background: Neuroblastoma is the most common extracranial solid tumor of childhood. The heterogeneous microenvironment of solid tumors contains hypoxic regions associated with poor prognosis and chemoresistance. Hypoxia implicates the actin cytoskeleton through its essential roles in motility, invasion and proliferation. However, hypoxia-induced changes in the actin cytoskeleton have only recently been observed in human cells. Tropomyosins are key regulators of the actin cytoskeleton and we hypothesized that tropomyosins may mediate hypoxic phenotypes.
Methods: Neuroblastoma (SH-EP) cells were incubated ± hypoxia (1 % O2, 5 % CO2) for up to 144 h, before examining the cytoskeleton by confocal microscopy and Western blotting.
Results: Hypoxic cells were characterized by a more organized actin cytoskeleton and a reduced ability to degrade gelatin substrates. Hypoxia significantly increased mean actin filament bundle width (72 h) and actin filament length (72-96 h). This correlated with increased hypoxic expression and filamentous organization of stabilizing tropomyosins Tm1 and Tm2. However, isoform specific changes in tropomyosin expression were more evident at 96 h.
Conclusions: This study demonstrates hypoxia-induced changes in the recruitment of high molecular weight tropomyosins into the actin stress fibres of a human cancer. While hypoxia induced clear changes in actin organization compared with parallel normoxic cultures of neuroblastoma, the precise role of tropomyosins in this hypoxic actin reorganization remains to be determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608101 | PMC |
http://dx.doi.org/10.1186/s12885-015-1741-8 | DOI Listing |
Cell Death Differ
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Korea.
The dynamics of focal adhesions (FAs) are essential physiological processes involved in cell spreading, metastasis, and regulation of the actin cytoskeleton. FAs are complex structures comprising proteins, such as paxillin and zyxin, which interact with extracellular membranes and influence cell motility and morphology. Although related studies have been reported in various cancers, the function and molecular mechanisms of oral squamous cell carcinoma (OSCC) remain unknown.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Physiology, University of Kentucky, Lexington, KY, United States.
Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!