A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enzymatically Modified Low-Density Lipoprotein Is Present in All Stages of Aortic Valve Sclerosis: Implications for Pathogenesis of the Disease. | LitMetric

Background: We have demonstrated previously that enzymatically degraded low-density lipoprotein (eLDL) is an essential causative component for the initiation of atherosclerosis. Here, we investigated the different stages of human aortic valve sclerosis for the presence of eLDL and effectors of the innate immune system, as well as the interaction of eLDL with isolated valvular interstitial cells/myofibroblasts to discover possible pathways leading to aortic valve sclerosis.

Methods And Results: Human aortic valvular tissue was obtained from 68 patients undergoing valve replacement surgery. Patients were classified into 3 groups (mild, moderate, or severe aortic valve sclerosis), and clinical data for statistical analysis were gathered from all patients. Immunohistochemical staining demonstrated extensive extracellular deposits of eLDL throughout all grades of aortic valve sclerosis. Complementary analysis of lipid composition revealed higher concentrations of the decisive components of eLDL (ie, unesterified cholesterol and linoleic acid) compared with internal control tissues. Further, the complement component C3d and terminal complement complexes colocalized with eLDL compatible with the proposal that subendothelially deposited eLDL is enzymatically transformed into a complement activator at early stages of valvular cusp lesion development. Gene expression profiles of proteases and complement components corroborated by immunohistochemistry demonstrated an upregulation of the protease cathepsin D (a possible candidate for LDL degradation to eLDL) and the complement inhibitor CD55. Surprisingly, substantial C-reactive protein expression was not observed before grade 2 aortic valve sclerosis as investigated with microarray analysis, reverse transcription-polymerase chain reaction analysis, and immunohistochemistry. Finally, we demonstrated cellular uptake of eLDL by valvular interstitial cells/myofibroblasts.

Conclusions: The present study is a startup of a hypothesis on the pathogenesis of aortic valve sclerosis declaring extracellular lipoprotein modification, subsequent complement activation, and cellular uptake by valvular interstitial cells/myofibroblasts as integral players.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845139PMC
http://dx.doi.org/10.1161/JAHA.115.002156DOI Listing

Publication Analysis

Top Keywords

aortic valve
28
valve sclerosis
24
valvular interstitial
12
eldl
9
low-density lipoprotein
8
aortic
8
valve
8
human aortic
8
interstitial cells/myofibroblasts
8
cellular uptake
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!