Combining physiological, molecular and biochemical approaches, this study investigated the transcriptional coordination and abscisic acid (ABA) mediated regulation of genes involved in sucrose import and its conversion to starch during grain filling in wheat. Sucrose import appears to be mediated by seed localized TaSUT1, mainly TaSUT1D, while sucrose cleavage by TaSuSy2. Temporal overlapping of the transcriptional activation of AGPL1 and AGPS1a that encode AGPase with that of the above genes suggests their significance in the synthesis of ADP-glucose; TaAGPL1A and TaAGPL1D contributing the majority of AGPL1 transcripts. ABA induced repressions of TaSUT1, TaSuSy2, TaAGPL1 and TaAGPS1a imply that ABA negatively regulates sucrose import into the endosperm and its subsequent metabolism to ADP-glucose, the substrate for starch synthesis. The formations of amyloses and amylopectin from ADP-glucose appear to be mediated by specific members of GBSS, and SS, SBE and DBE gene families, and the ABA-induced transcriptional change in most of these genes implies that ABA regulates amylose and amylopectin synthesis. The findings provide insights into the molecular mechanisms underlying the coordination and ABA mediated regulation of sucrose transport into the developing endosperm and its subsequent metabolism to starch during grain filling in wheat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2015.09.010DOI Listing

Publication Analysis

Top Keywords

mediated regulation
12
grain filling
12
filling wheat
12
sucrose import
12
transcriptional coordination
8
coordination abscisic
8
abscisic acid
8
regulation sucrose
8
sucrose transport
8
aba mediated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!