The meta-QTL and candidate genes will facilitate the elucidation of molecular bases underlying agriculturally important traits and open new avenues for functional markers development and elite alleles introgression in maize breeding program. A large number of QTLs attributed to grain productivity and other agriculturally important traits have been identified and deposited in public repositories. The integration of fruitful QTL becomes a major issue in current plant genomics. To this end, we first collected QTL for six agriculturally important traits in maize, including yield, plant height, ear height, leaf angle, stay-green, and maize rough dwarf disease resistance. The meta-analysis method was then employed to retrieve 113 meta-QTL. Additionally, we also isolated candidate genes for target traits by the bioinformatic technique. Several candidates, including some well-characterized genes, GA3ox2 for plant height, lg1 and lg4 for leaf angle, zfl1 and zfl2 for flowering time, were co-localized with established meta-QTL intervals. Intriguingly, in a relatively narrow meta-QTL region, the maize ortholog of rice yield-related gene GW8/OsSPL16 was believed to be a candidate for yield. Leveraging results presented in this study will provide further insights into the genetic architecture of maize agronomic traits. Moreover, the meta-QTL and candidate genes reported here could be harnessed for the enhancement of stress tolerance and yield performance in maize and translation to other crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-015-2419-9 | DOI Listing |
Elife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFFront Parasitol
March 2024
Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Flatworms depend on stem cells for continued tissue growth and renewal during their life cycles, making these cells valuable drug targets. While neoblasts are extensively characterized in the free-living planarian , and similar stem cells have been characterized in the trematode , their identification and characterization in cestodes is just emerging. Since stem cells are generally affected by irradiation, in this work we used this experimental approach to study the stem cells of the model cestode .
View Article and Find Full Text PDFVet Res Forum
December 2024
Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
Testicular ischemia-reperfusion (I/R) injury during testicular torsion is strongly influenced by oxidative stress caused by excessive accumulation of unscavenged reactive oxygen species. This study aimed to investigate the effects of intra-peritoneal administration of Mito-TEMPO (MT) on I/R injury in testicular torsion/detorsion (T/D) in mice. Forty-two male mice were divided into seven groups including 1 control and 6 treatment groups (360° T/D, 720° T/D, 360° T/D + 0.
View Article and Find Full Text PDFNarra J
December 2024
Graduate School in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia.
Cervical cancer is the fourth most common cancer among women globally, and studies have shown that genetic variants play a significant role in its development. A variety of germline and somatic mutations are associated with cervical cancer. However, genomic data derived from these mutations have not been extensively utilized for the development of repurposed drugs for cervical cancer.
View Article and Find Full Text PDFGenome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!