Stenosis is a symptom of coronary artery disease (CAD), and is caused by narrowing of arteries in the heart. Over the last several decades, medical implants such as cardiac stents have been developed to counter stenosis. Upon implantation of a stent to open up a restricted artery, narrowing of the artery can reoccur (restenosis), due to an immune response launched by the body towards the stent. Currently, restenosis is a major health concern for patients who have undergone heart surgery for coronary artery disease. Recently, there have been new methods developed to combat restenosis, which have shown potential signs of success. One proposed method is the use of stents to capture cells, thereby reducing immune response. This review will explore the different methods for cell capture both in vitro and in vivo. Biological modifications of the stent will be surveyed, as well as the use of surface science to immobilize biological probes. Immobilization of proteins and nucleotides, as well as use of magnetic field are all methods that will be further discussed. Finally, concluding remarks and future prospects will be presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiochem.2015.09.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!