Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanofiber-based hydrogels (nanogels) with different, covalently bound peptides were used as an extracellular environment for lens epithelial cells (LECs) in order to modulate the capsular opacification (CO) response after lens surgery in a porcine eye model. Lenses were divided into 15 groups (n = 4 per group), the lens content was removed and the empty capsules were refilled with nanogel without peptides and nanogels with 13 combinations of 5 different peptides: two laminin-derived, two fibronectin-derived, and one collagen IV-derived peptide representing cell adhesion motifs. A control group of 4 lenses was refilled with hyaluronan. After refilling, lenses were extracted from the porcine eye and cultured for three weeks. LECs were assessed for morphology and alpha smooth muscle actin (αSMA) expression using confocal laser scanning microscopy. Compared to hyaluronan controls, lenses filled with nanogel had less CO formation, indicated by a lower αSMA expression (P = 0.004). Microscopy showed differences in morphological cell response within the nanogel refilled groups. αSMA expression in these groups was highest in lenses refilled with nanogel without peptides (9.54 ± 11.29%). Overall, LEC transformation is reduced by the presence of nanogels and the response is improved even further by incorporation of extracellular matrix peptides representing adhesion motifs. Thus, nanomaterials targeting biological pathways, in our case interactions with integrin signaling, are a promising avenue toward reduction of CO. Further research is needed to optimize nanogel-peptide combinations that fully prevent CO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2015.10.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!