The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2015.10.014 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Institute for Applied Mathematics, University of Bonn, Bonn, Germany.
Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).
Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.
Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.
Front Med
January 2025
Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!