Investigations into an Outbreak of Botulism Caused by Clostridium botulinum Type C/D in Laying Hens.

Avian Dis

C Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden.

Published: June 2015

This case report describes a recent botulism outbreak in commercial laying hens with a history of increased mortality and flaccid paralysis. Routine diagnostic gross examination and microscopy from seven hens were inconclusive, but botulinum neurotoxin (BoNT) in peripheral blood was neutralized with both type C and type D antitoxins in the mouse bioassay. During a farm visit, 10 additional hens from a 34-wk-old flock on the farm were selected for clinical examination and further sampling. Nine hens were observed in sternal recumbency, with flaccid paralysis of the neck, drooping wings and tail, inability to escape, and bilateral ptosis, and one hen showed nonspecific clinical signs. Samples from cecum and liver were collected, and the gene coding for BoNT was detected by PCR in all 10 cecal samples and in four of the liver samples. Clostridium botulinum mosaic type C/D was isolated from 5 out of 10 hens from either cecum or liver, and the isolates were subjected to pulsed-field gel electrophoresis subtyping. All five isolates produced the same banding pattern, which was identical or showed >90% similarity to isolates from three different outbreaks on broiler farms in Sweden and Denmark during the 2007-10 period. However, they were clearly distinguishable from the predominantly reported pulsotype associated with avian botulism outbreaks in Europe. The authors are unaware of any previous report of C. botulinum mosaic type C/D isolates from laying hens.

Download full-text PDF

Source
http://dx.doi.org/10.1637/10861-051214-CaseDOI Listing

Publication Analysis

Top Keywords

type c/d
12
laying hens
12
clostridium botulinum
8
flaccid paralysis
8
cecum liver
8
botulinum mosaic
8
mosaic type
8
hens
7
type
5
investigations outbreak
4

Similar Publications

Extravillous trophoblasts reverse the decidualization induced increase in matrix production by secreting TGFβ antagonists Emilin-1 and Gremlin-1.

Cells Dev

January 2025

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, United States of America; Jackson Laboratory, Farmington, CT, United States of America. Electronic address:

The maternal-fetal interface has long been considered as a frontier for an evolutionary arms race due to the close juxtaposition of genetically distinct tissues. In hemochorial species with deep placental invasion, including in humans, maternal stroma prepares its defenses against deep trophoblast invasion by decidualization, a differentiation process characterized by increased stromal cell matrix production, and contractile force generation. Decidualization has evolved from an ancestral wound healing response of fibroblast activation by the endometrial stroma.

View Article and Find Full Text PDF

Dissecting the mystery of embryonic scaling: The Scalers Hypothesis and its confirmation in sea urchin embryos.

Cells Dev

October 2024

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya str., Moscow 117997, Russia; Pirogov Russian National Research Medical University, 1 Ostrovityanova str., 117997 Moscow, Russia. Electronic address:

Article Synopsis
  • Embryonic scaling is a unique biological phenomenon where embryos adjust their spatial structure according to their size, initially described in sea urchins.
  • Recent research has aimed to understand the role of specific genes, termed "scalers," which are crucial in regulating morphogen concentration gradients in correlation with embryo size.
  • The findings confirm that scalers, including the gene Mmp3, exist in various reaction-diffusion system models and play a vital role in maintaining gradient scaling across different embryonic types.
View Article and Find Full Text PDF

The extracellular matrix (ECM) is a critical component of tissue where it provides structural and signaling support to cells. Its dysregulation and accumulation lead to fibrosis, a major clinical challenge underlying many diseases that currently has little effective treatment. An understanding of the key molecular initiators of fibrosis would be both diagnostically useful and provide potential targets for therapeutics.

View Article and Find Full Text PDF

Evaluating neural crest cell migration in a Col4a1 mutant mouse model of ocular anterior segment dysgenesis.

Cells Dev

September 2024

Department of Ophthalmology, University of California, San Francisco, CA 94158, United States; Department of Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, United States. Electronic address:

The periocular mesenchyme (POM) is a transient migratory embryonic tissue derived from neural crest cells (NCCs) and paraxial mesoderm that gives rise to most of the structures in front of the eye. Morphogenetic defects of these structures can impair aqueous humor outflow, leading to elevated intraocular pressure and glaucoma. Mutations in collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome - a multisystem disorder often characterized by variable cerebrovascular, ocular, renal, and neuromuscular manifestations.

View Article and Find Full Text PDF

While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!