With the increased availability of computational resources, the past decade has seen a rise in the use of computational fluid dynamics (CFD) for medical applications. There has been an increase in the application of CFD to attempt to predict the rupture of intracranial aneurysms, however, while many hemodynamic parameters can be obtained from these computations, to date, no consistent methodology for the prediction of the rupture has been identified. One particular challenge to CFD is that many factors contribute to its accuracy; the mesh resolution and spatial/temporal discretization can alone contribute to a variation in accuracy. This failure to identify the importance of these factors and identify a methodology for the prediction of ruptures has limited the acceptance of CFD among physicians for rupture prediction. The International CFD Rupture Challenge 2013 seeks to comment on the sensitivity of these various CFD assumptions to predict the rupture by undertaking a comparison of the rupture and blood-flow predictions from a wide range of independent participants utilizing a range of CFD approaches. Twenty-six groups from 15 countries took part in the challenge. Participants were provided with surface models of two intracranial aneurysms and asked to carry out the corresponding hemodynamics simulations, free to choose their own mesh, solver, and temporal discretization. They were requested to submit velocity and pressure predictions along the centerline and on specified planes. The first phase of the challenge, described in a separate paper, was aimed at predicting which of the two aneurysms had previously ruptured and where the rupture site was located. The second phase, described in this paper, aims to assess the variability of the solutions and the sensitivity to the modeling assumptions. Participants were free to choose boundary conditions in the first phase, whereas they were prescribed in the second phase but all other CFD modeling parameters were not prescribed. In order to compare the computational results of one representative group with experimental results, steady-flow measurements using particle image velocimetry (PIV) were carried out in a silicone model of one of the provided aneurysms. Approximately 80% of the participating groups generated similar results. Both velocity and pressure computations were in good agreement with each other for cycle-averaged and peak-systolic predictions. Most apparent "outliers" (results that stand out of the collective) were observed to have underestimated velocity levels compared to the majority of solutions, but nevertheless identified comparable flow structures. In only two cases, the results deviate by over 35% from the mean solution of all the participants. Results of steady CFD simulations of the representative group and PIV experiments were in good agreement. The study demonstrated that while a range of numerical schemes, mesh resolution, and solvers was used, similar flow predictions were observed in the majority of cases. To further validate the computational results, it is suggested that time-dependent measurements should be conducted in the future. However, it is recognized that this study does not include the biological aspects of the aneurysm, which needs to be considered to be able to more precisely identify the specific rupture risk of an intracranial aneurysm.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4031794DOI Listing

Publication Analysis

Top Keywords

intracranial aneurysms
12
rupture
9
cfd
9
computational fluid
8
fluid dynamics
8
rupture challenge
8
predict rupture
8
methodology prediction
8
mesh resolution
8
free choose
8

Similar Publications

The Artisse intrasaccular device (Medtronic) offers a novel treatment option for unruptured and ruptured wide-neck bifurcating intracranial aneurysms.1 2The Artisse device features enhancements including a distal tip for dome protection, platinum band markers for improved visibility, and a bilayer high-density platinum core nitinol mesh basket for enhanced flexibility and visibility when compared with previous devices.2-7 Data from case series demonstrate the procedural safety and efficacy of the Artisse device.

View Article and Find Full Text PDF

Skeletal muscle relaxants have their place in everyday use in numerous anesthesiological procedures, such as preparing a patient for surgery, supporting mechanical ventilation, and performing effective intubation. These drugs can be divided, based on their mechanism of action, into depolarizing skeletal relaxants, such as succinylcholine, and non-depolarizing skeletal muscle relaxants. Non-depolarizing agents are further categorized, based on their structure, into steroidal (eg, rocuronium) and benzylisoquinoline (eg, atracurium) compounds.

View Article and Find Full Text PDF

[Clinical analysis of Tolosa-Hunt syndrome].

Zhonghua Yan Ke Za Zhi

January 2025

Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin300052, China.

To investigate the clinical features of Tolosa-Hunt syndrome (THS), a type of painful ophthalmoplegia. This was a retrospective case series study. The clinical data of patients diagnosed with painful ophthalmoplegia in the Department of Neurology of Tianjin Medical University General Hospital from January 2019 to December 2022 were continuously collected.

View Article and Find Full Text PDF

Objective: The study evaluated the effectiveness and safety of single-stage versus multistage endovascular treatment in subarachnoid hemorrhage patients with Mirror Aneurysms.

Materials And Methods: Our research team performed a prospective study, focusing on the radiographic and clinical data of patients diagnosed with subarachnoid hemorrhage, specifically those who presented with Mirror Aneurysms upon admission to our institutions. According to the different endovascular treatment stages, these patients were grouped into the multistage cohort and the single-stage cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!