Structural Insights into Anthranilate Priming during Type II Polyketide Biosynthesis.

ACS Chem Biol

Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.

Published: January 2016

The incorporation of nonacetate starter units during type II polyketide biosynthesis helps diversify natural products. Currently, there are few enzymatic strategies for the incorporation of nonacetate starter units in type II polyketide synthase (PKS) pathways. Here we report the crystal structure of AuaEII, the anthranilate:CoA ligase responsible for the generation of anthraniloyl-CoA, which is used as a starter unit by a type II PKS in aurachin biosynthesis. We present structural and protein sequence comparisons to other aryl:CoA ligases. We also compare the AuaEII crystal structure to a model of a CoA ligase homologue, AuaE, which is present in the same gene cluster. AuaE is predicted to have the same fold as AuaEII, but instead of CoA ligation, AuaE catalyzes acyl transfer of anthranilate from anthraniloyl-CoA to the acyl carrier protein (ACP). Together, this work provides insight into the molecular basis for starter unit selection of anthranilate in type II PKS biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886370PMC
http://dx.doi.org/10.1021/acschembio.5b00500DOI Listing

Publication Analysis

Top Keywords

type polyketide
12
polyketide biosynthesis
8
incorporation nonacetate
8
nonacetate starter
8
starter units
8
units type
8
crystal structure
8
starter unit
8
type pks
8
type
5

Similar Publications

Four new macrolides, spirosnuolides A-D (-, respectively), were discovered from the termite nest-derived sp. INHA29. Spirosnuolides A-D are 18-membered macrolides sharing an embedded [6,6]-spiroketal functionality inside the macrocycle and are conjugated with structurally uncommon side chains featuring cyclopentenone, 1,4-benzoquinone, hydroxyfuroic acid, or butenolide moieties.

View Article and Find Full Text PDF

is the main pathogen of peanut pod rot in China. To investigate the type of toxin and its pathogenic mechanism, a macrolide, brefeldin A, was isolated. The structure of the compound was identified by 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS).

View Article and Find Full Text PDF

Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.

View Article and Find Full Text PDF

Fungal secondary metabolites (SMs) have broad applications in biomedicine, biocontrol, and the food industry. In this study, whole-genome sequencing and annotation of were conducted, followed by comparative genomic analysis with 11 other species of Polyporales to examine genomic variations and secondary metabolite biosynthesis pathways. Additionally, transcriptome data were used to analyze the differential expression of polyketide synthase (PKS), terpene synthase (TPS) genes, and transcription factors (TFs) under different culture conditions.

View Article and Find Full Text PDF

Pseudovibriamides from marine sponge bacteria promote flagellar motility via transcriptional modulation.

mBio

December 2024

Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA.

α-Proteobacteria have been repeatedly isolated from marine sponges and proposed to be beneficial to the host. Bacterial motility is known to contribute to host colonization. We have previously identified pseudovibriamides A and B, produced in culture by Ab134, and shown that pseudovibriamide A promotes flagellar motility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!