The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of "Substrate-Guiding Residues" for Enzymatic Specificity.

Angew Chem Int Ed Engl

Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstraße 14, 1090 Wien (Austria) http://www.bpc.univie.ac.at.

Published: December 2015

Tyrosinases and catechol oxidases are members of the class of type III copper enzymes. While tyrosinases accept both mono- and o-diphenols as substrates, only the latter substrate is converted by catechol oxidases. Researchers have been working for decades to elucidate the monophenolase/diphenolase specificity on a structural level and have introduced an early hypothesis that states that the reason for the lack of monophenolase activity in catechol oxidases may be its structurally restricted active site. However, recent structural and biochemical studies of this enzyme class have raised doubts about this theory. Herein, the first crystal structure of a plant tyrosinase (from Juglans regia) is presented. The structure reveals that the distinction between mono- and diphenolase activity does not depend on the degree of restriction of the active site, and thus a more important role for amino acid residues located at the entrance to and in the second shell of the active site is proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678486PMC
http://dx.doi.org/10.1002/anie.201506994DOI Listing

Publication Analysis

Top Keywords

catechol oxidases
12
active site
12
structure plant
8
plant tyrosinase
8
tyrosinase walnut
4
walnut leaves
4
leaves reveals
4
reveals "substrate-guiding
4
"substrate-guiding residues"
4
residues" enzymatic
4

Similar Publications

Novel and simple spectrophotometric and distance based procedures for thiols (L-cysteine, N-acetylcysteine, and glutathione) determination in biological fluids and pharmaceuticals have been proposed based on their inhibitory action on the oxidation of catechol in the presence of Agaricus bisporus crude extract (ABE). The influence of L-glycine, L-alanine, L-proline, L-methionine, L-cystine, ascorbic acid, uric acid, and bilirubin on the thiol determination has been investigated. Uric acid, bilirubin, L-cystine (oxidized thiol), and L-amino acids do not interfere with the determination.

View Article and Find Full Text PDF

Network Pharmacology and Metabolomics Reveal Anti-Ferroptotic Effects of Curcumin in Acute Kidney Injury.

Drug Des Devel Ther

December 2024

Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People's Republic of China.

Introduction: Acute kidney injury (AKI) is linked to high rates of mortality and morbidity worldwide thereby posing a major public health problem. Evidences suggest that ferroptosis is the primary cause of AKI, while inhibition of monoamine oxidase A(MAOA) and 5-hydroxytryptamine were recognized as the defender of ferroptosis. Curcumin (Cur) is a natural polyphenol and the main bioactive compound of , which has been found nephroprotection in AKI.

View Article and Find Full Text PDF

Background: Charcoal Rot (CR) poses a significant threat to mung bean crops by reducing yield, making the development of resistant varieties crucial for stable production and food security. This study evaluated 19 newly identified mung bean landraces using biochemical traits and SSR markers, revealing genetic variability, CR disease reactions, and traits influencing yield and resistance, which provide valuable insights for breeding CR-resistant, high-yielding varieties.

Methods And Results: Mung bean landraces were evaluated for their response to CR using 4 biochemical parameters, and 10 SSR markers to assess genetic variability and disease resistance.

View Article and Find Full Text PDF

JMJD3 deficiency disturbs dopamine biosynthesis in midbrain and aggravates chronic inflammatory pain.

Acta Neuropathol Commun

December 2024

Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.

Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons.

View Article and Find Full Text PDF

Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates as oxidase mimetics for ratiometric colorimetric detection of nitrite.

Mikrochim Acta

December 2024

College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.

Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au-Zn exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with K of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!