Tumor Therapeutics Work as Stress Inducers to Enhance Tumor Sensitivity to Natural Killer (NK) Cell Cytolysis by Up-regulating NKp30 Ligand B7-H6.

J Biol Chem

From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China, and

Published: December 2015

Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705966PMC
http://dx.doi.org/10.1074/jbc.M115.674010DOI Listing

Publication Analysis

Top Keywords

tumor cells
16
tumor
13
tumor therapeutics
12
enhance tumor
12
tumor sensitivity
12
cell cytolysis
12
tumor therapy
12
therapeutics work
8
work stress
8
stress inducers
8

Similar Publications

Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control.

Front Med

January 2025

Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.

Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy.

View Article and Find Full Text PDF

The radiologic spectrum of neuroendocrine tumors in emergent care.

Rev Endocr Metab Disord

January 2025

Division of Abdominal Imaging, Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada.

Neuroendocrine tumors (NETs) are a diverse group of neoplasms whose prevalence is increasing globally, primarily due to advancements in diagnostic techniques. NETs arise from cells of the diffuse endocrine system and can occur in various locations, with the gastrointestinal tract being the most common. Their diverse clinical presentations, which range from asymptomatic to severe hormone-induced syndromes, pose significant diagnostic challenges.

View Article and Find Full Text PDF

Purpose: Activating T cell costimulatory receptors is a promising approach for cancer immunotherapy. In preclinical work, adding an OX40 agonist to in situ vaccination (ISV) with SD101, a TLR9 agonist, was curative in a mouse model of lymphoma. We sought to test this combination in a Phase I clinical trial for patients with low-grade B cell lymphoma.

View Article and Find Full Text PDF

Tumor cell-intrinsic signaling pathways can drastically affect the tumor immune microenvironment, promoting tumor progression and resistance to immunotherapy by excluding immune-cell populations from the tumor. Several tumor cell-intrinsic pathways have been reported to modulate myeloid-cell and T-cell infiltration creating "cold" tumors. However, clinical evidence suggests that excluding cytotoxic T cells from the tumor core also mediates immune evasion.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!