Pathogenicity of Candida albicans is linked with its developmental stages, notably the capacity switch from yeast-like to hyphal growth, and to form biofilms on surfaces. To better understand the cellular processes involved in C. albicans development, a collection of 63 C. albicans protein kinase mutants was screened for biofilm formation in a microtitre plate assay. Thirty-eight mutants displayed some degree of biofilm impairment, with 20 categorised as poor biofilm formers. All the poor biofilm formers were also defective in the switch from yeast to hyphae, establishing it as a primary defect. Five genes, VPS15, IME2, PKH3, PGA43 and CEX1, encode proteins not previously reported to influence hyphal development or biofilm formation. Network analysis established that individual components of some processes, most interestingly MAP kinase pathways, are not required for biofilm formation, most likely indicating functional redundancy. Mutants were also screened for their response to bacterial supernatants and it was found that Pseudomonas aeruginosa supernatants inhibited biofilm formation in all mutants, regardless of the presence of homoserine lactones (HSLs). In contrast, Candida morphology was only affected by supernatant containing HSLs. This confirms the distinct HSL-dependent inhibition of filamentation and the HSL-independent impairment of biofilm development by P. aeruginosa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsyr/fov092 | DOI Listing |
Mol Biol Rep
January 2025
Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.
View Article and Find Full Text PDFFront Microbiol
January 2025
Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czechia.
Introduction: is a significant human pathogen with the ability to form biofilms, a critical factor in its resistance to antifungal treatments. This study aims to evaluate the antifungal activity and biofilm inhibition potential of Tea Tree Oil (TTO) derived from cultivated in Vietnam.
Methods: The antifungal activity of TTO was assessed by determining the Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) using broth dilution methods.
Nat Commun
January 2025
Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe-assisted asymmetric biosynthesis, herein, we show the in situ bacterial fermentation of Komagataeibacter sucrofermentants to fabricate a series of bacterial cellulosic biofilms with CPL of green, orange, red, and near-infrared colors.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.
Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz, University.
The current study was designed to evaluate the antibacterial, antibiofilm, and biofilm inhibitory potential of six medicinal plants, including Trachyspermum ammi, Trigonella foenum-graecum, Nigella sativa, Thymus vulgaris, Terminalia arjuna, and Ipomoea carneaid against catheter-associated bacteria (CAB). Eighteen CAB were identified up to species level using 16S rRNA gene sequencing, viz., Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!