Although there are already many efforts to investigate the electronic structures of twisted bilayer graphene, a definitive conclusion has not yet been reached. In particular, it is still a controversial issue whether a tunable electrical (or transport) bandgap exists in twisted bilayer graphene film until now. Herein, for the first time, it has been demonstrated that a tunable electrical bandgap can be opened in the twisted bilayer graphene by the combination effect of twist and vertical electrical fields. In addition, we have also developed a facile chemical vapor deposition method to synthesize large-area twisted bilayer graphene by introducing decaborane as the cocatalyst for decomposing methane molecules. The growth mechanism is demonstrated to be a defined-seeding and self-limiting process. This work is expected to be beneficial to the fundamental understanding of both the growth mechanism for bilayer graphene on Cu foil and more significantly, the electronic structures of twisted bilayer graphene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607884PMC
http://dx.doi.org/10.1038/srep15285DOI Listing

Publication Analysis

Top Keywords

bilayer graphene
28
twisted bilayer
24
tunable electrical
12
electrical bandgap
8
large-area twisted
8
chemical vapor
8
vapor deposition
8
electronic structures
8
structures twisted
8
growth mechanism
8

Similar Publications

Direct View of Gate-Tunable Miniband Dispersion in Graphene Superlattices Near the Magic Twist Angle.

ACS Nano

January 2025

Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark.

Superlattices from twisted graphene mono- and bilayer systems give rise to on-demand many-body states such as Mott insulators and unconventional superconductors. These phenomena are ascribed to a combination of flat bands and strong Coulomb interactions. However, a comprehensive understanding is lacking because the low-energy band structure strongly changes when an electric field is applied to vary the electron filling.

View Article and Find Full Text PDF

Electronic confinement induced quantum dot behavior in magic-angle twisted bilayer graphene.

Nanoscale

January 2025

Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.

View Article and Find Full Text PDF

The chiral lattice structure of twisted bilayer graphene with D_{6} symmetry allows for intrinsic photogalvanic effects only at off-normal incidence, while additional extrinsic effects are known to be induced by a substrate or a gate potential. In this Letter, we first compute the intrinsic effects and show they reverse sign at the magic angle, revealing a band inversion at the Γ point. We next consider different extrinsic effects, showing how they can be used to track the strengths of the substrate coupling or electric displacement field.

View Article and Find Full Text PDF

Emergent Symmetry and Valley Chern Insulator in Twisted Double-Bilayer Graphene.

Phys Rev Lett

December 2024

Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA.

Theoretical calculations show that twisted double bilayer graphene (TDBG) under a transverse electric field develops a valley Chern number 2 at charge neutrality. Using thermodynamic and thermal activation measurements we report the experimental observation of a universal closing of the charge neutrality gap in the Hofstadter spectrum of TDBG at 1/2 magnetic flux per unit cell, in agreement with theoretical predictions for a valley Chern number 2 gap. Our theoretical analysis of the experimental data shows that the interaction energy, while larger than the flat-band bandwidth in TDBG near 1° does not alter the emergent valley symmetry or the single-particle band topology.

View Article and Find Full Text PDF

Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!