Because (222)Rn is a progeny of (238)U, the relative abundance of uranium may be used to predict the areas that have the potential for high indoor radon concentration and therefore determine the best areas to conduct future surveys. Geographic Information System (GIS) mapping software was used to construct maps of South Dakota that included levels of uranium concentrations in soil and stream water and uranium deposits. Maps of existing populations and the types of land were also generated. Existing data about average indoor radon levels by county taken from a databank were included for consideration. Although the soil and stream data and existing recorded average indoor radon levels were sparse, it was determined that the most likely locations of elevated indoor radon would be in the northwest and southwest corners of the state. Indoor radon levels were only available for 9 out of 66 counties in South Dakota. This sparcity of data precluded a study of correlation of radon to geological features, but further motivates the need for more testing in the state. Only actual measurements should be used to determine levels of indoor radon because of the strong roles home construction and localized geology play in radon concentration. However, the data visualization method demonstrated here is potentially useful for directing resources relating to radon screening campaigns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708909PMC
http://dx.doi.org/10.1093/jrr/rrv041DOI Listing

Publication Analysis

Top Keywords

indoor radon
24
south dakota
12
radon levels
12
radon
10
geographic system
8
system gis
8
radon screening
8
radon concentration
8
soil stream
8
average indoor
8

Similar Publications

RADON in a high karst area of Montenegro - A case study.

Appl Radiat Isot

March 2025

School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia.

The national radon surveys in Montenegro revealed that the highest annual average radon concentrations (C) in ground floors of dwellings and schools were found in a rural region characterized as a typical high-karst area. In this region, spanning approximately 800 km, C values in 9 houses and 16 schools ranged from 219 to 2494 Bq/m, with AM = 977 Bq/m. To investigate the causes of these elevated indoor radon concentrations, the following parameters were measured near the 25 surveyed buildings: soil humidity, electrical conductivity, pH, activity concentrations of Ra, U, U, Th and K, radon concentration in soil gas (c), soil permeability for radon gas (k), and gamma dose rate in the air.

View Article and Find Full Text PDF

Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.

View Article and Find Full Text PDF

Radon Exposure and Gestational Diabetes.

JAMA Netw Open

January 2025

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.

Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.

Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.

Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.

View Article and Find Full Text PDF

Indoor radon is a significant risk factor for the development of LC. This study aimed to identify potential biomarkers for LC risk in high background radiation areas using a metabolomics approach (UHPLC-HRMS). Based on the indoor radon activity concentration measurements in the Kong Khaek subdistrict, serum samples were collected from 45 nonsmoker or former smoker participants, comprising 15 LC patients and 30 matched healthy controls (low- and high-radon groups, respectively).

View Article and Find Full Text PDF

Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!