A new approach to the chiral separation of novel diazenes.

J Sep Sci

Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic.

Published: December 2015

Two new types of potential liquid-crystalline azo compounds were synthesized in the form of racemic mixtures and as the individual S enantiomers. Both materials consisting of two substituted aromatic rings in the molecular core and one chiral center at the aliphatic moiety showed mesomorphic behavior. The separation of the R and S enantiomers by chiral high-performance liquid chromatography was unsuccessful when the azo compounds were in their natural E state. However, the irradiation of the compounds in the solution by UV light led to an almost quantitative transition to their Z forms. The chromatographic behavior of the compounds in their Z forms was significantly different, and partial separation of the individual enantiomers on chiral polysaccharide-based stationary phases was obtained. Thus, the proposed procedure represents a novel approach to the enantioseparation of chiral diazenes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201500816DOI Listing

Publication Analysis

Top Keywords

azo compounds
8
individual enantiomers
8
enantiomers chiral
8
approach chiral
4
chiral separation
4
separation novel
4
novel diazenes
4
diazenes types
4
types potential
4
potential liquid-crystalline
4

Similar Publications

This study demonstrated a novel approach to accurately estimate 5-day biochemical oxygen demand (BOD) in textile wastewater using a microbial consortium from food processing wastewater fixed on coconut fibers. Although glucose-glutamic acid (GGA) has been widely known as the most preferred substrates for microbial respiration, its calibration surprisingly resulted in an overestimation of BOD in textile wastewater due to its lower utilization rate compared to that of textile wastewater. After being adapted with a new nutrient environment composed of GGA and textile wastewater, the adapted packed-bed bioreactors (PBBRs) was capable of accurate estimation of BOD in textile wastewater using GGA standard solution.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Objectives: This review examines how food additives impact the central nervous system (CNS) focusing on the effects of sugars, artificial sweeteners, colorings, and preservatives.

Methods: A literature search of PubMed, Scopus, and Web of Science was conducted for studies published since 2010. Key search terms included, food additives, neurotoxicity, cognition, and behavior.

View Article and Find Full Text PDF

The discovery of a multi-target scaffold in medicinal chemistry is an important goal for the development of new drugs with different biological effects. Azobenzene is one of the frameworks in medicinal chemistry used for its simple synthetic methods and for the possibility to obtain a great variety of derivatives by simple chemical modifications or substitutions. Phenyldiazenyl-containing compounds show a wide spectrum of pharmacological activities, such as antimicrobial, anti-inflammatory, anti-neurodegenerative, anti-cancer, and anti-enzymatic.

View Article and Find Full Text PDF

Oat beta-glucans (OBGs) are known for their beneficial effects on gut health, including anti-inflammatory and prebiotic effects. The aim of this study was to evaluate the impact of two doses (1% or 3% /) of dietary low-molar-mass OBG supplementation on colorectal cancer (CRC) development, immune cell profiles, intestinal barrier protein expression, and microbiota composition in a rat model of CRC induced by azoxymethane (AOM). Microbiome analysis revealed significant differences between the control and CRC groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!