Background: The development of commercially available panels for human blood plasma screening via selected reaction monitoring (SRM) offers reliable, cost-efficient and highly-standardized discovery and validation of protein biomarkers. However, protein detection by SRM can be hampered by interfering peptide fragment ions. To estimate the influence of interference on protein detection, we performed different types of sample preparation and implemented SRM measurements for well-characterized protein targets approved by the US Food and Drug Administration.
Methods: We used the PlasmaDeepDive™ SRM assay from BiognoSYS AG for absolute quantification of 18 proteins in 19 samples of human plasma using three different protocols for sample preparation. SRM measurements were performed using iRT standards for retention time normalization and isotopically-labeled reference peptides for absolute quantification. SpectroDive™ software was used for automated detection of reliable peak groups.
Results: Fourteen targeted proteins were quantitatively measured in more than half of the samples. Depletion of highly-abundant plasma proteins and peptide fraction clean-up on centrifuge plates resulted in detection of all 18 targeted proteins in femtomolar to picomolar concentrations.
Conclusions: It was shown that commercially designed SRM kits are suitable for SRM detection of well-established plasma/serum biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607682 | PMC |
http://dx.doi.org/10.1186/s40169-015-0071-4 | DOI Listing |
Nat Commun
December 2024
Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Pathogenic activating mutations in the fibroblast growth factor receptor 3 (FGFR3) drive disease maintenance and progression in urothelial cancer. 10-15% of muscle-invasive and metastatic urothelial cancer (MIBC/mUC) are FGFR3-mutant. Selective targeting of FGFR3 hotspot mutations with tyrosine kinase inhibitors (e.
View Article and Find Full Text PDFNat Commun
December 2024
Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.
Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.
View Article and Find Full Text PDFNat Commun
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
Carbon nanomaterials show outstanding promise as electrocatalysts for hydrogen peroxide (HO) synthesis via the two-electron oxygen reduction reaction. However, carbon-based electrocatalysts that are capable of generating HO at industrial-level current densities (>300 mA cm) with high selectivity and long-term stability remain to be discovered. Herein, few-layer boron nanosheets are in-situ introduced into a porous carbon matrix, creating a metal-free electrocatalyst (B-C) with HO production rates of industrial relevance in neutral or alkaline media.
View Article and Find Full Text PDFChemistry
December 2024
Sapienza Università di Roma, Chemistry, Piazzale Aldo Moro 5, Dipartimento di Chimica, edificio CU 014, 00185, Rome, ITALY.
The outstanding efficiency and selectivity of enzymatic reactions, such as C-H oxidation by nonheme iron oxygenases, stems from a precise control of substrate positioning inside the active site. The resulting proximity between a specific moiety (a certain C-H bond) to the reactant (a FeIV(O) active species) translates into higher rates and selectivity, that can be in part replicated also with artificial supramolecular catalysts. However, structural modification of the position and orientation of the binding site both in enzymes and in artificial catalysts often leads to significant variations in reactivity that can be difficult to rationalize due to the system's complexity.
View Article and Find Full Text PDFMetallomics
December 2024
Department of Environmental and Physical Sciences, Faculty of Science.
Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!