A novel sensor for the detection of acetamiprid in vegetables based on its photocatalytic degradation compound.

Food Chem

College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China. Electronic address:

Published: March 2016

An electrochemical method for the indirect determination of acetamiprid was studied, using titanium dioxide photocatalysts coupled with a carbon paste electrode. The cyclic voltammetric results indicated that the photocatalytic degradation compound of acetamiprid had electroactivity in neutral solutions. The amount of acetamiprid was further indirectly determined by differential pulse anodic stripping voltammetric analysis as a sensitive detection technique. The experimental parameters were optimized with regard to the photocatalytic degradation time, pH of buffer solution, accumulation potential and accumulation time. Under optimal conditions, the proposed electrochemical method could detect acetamiprid concentrations ranging from 0.01 to 2.0μM, with a detection limit (3S/N) of 0.2nM. Moreover, the proposed method displays excellent selectivity, good reproducibility, and acceptable operational stability and can be successfully applied to acetamiprid determination in vegetable samples with satisfying results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2015.08.118DOI Listing

Publication Analysis

Top Keywords

photocatalytic degradation
12
degradation compound
8
electrochemical method
8
acetamiprid
6
novel sensor
4
sensor detection
4
detection acetamiprid
4
acetamiprid vegetables
4
vegetables based
4
based photocatalytic
4

Similar Publications

NH-MIL-125(Ti) and its functional nanomaterials - a versatile platform in the photocatalytic arena.

Nanoscale

January 2025

Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.

Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.

View Article and Find Full Text PDF

The use of eggshells as a primary source for developing value-added materials has garnered significant attention in recent years due to their effectiveness as an excellent adsorbent and support. In this study, the Solid-State Dispersion (SSD) method was utilized to prepare composite photocatalysts of eggshells (ES)/TiO₂ in various ratios. TiO₂ and eggshell photocatalysts were also employed as control samples.

View Article and Find Full Text PDF

Light-Programmable g-CN Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation.

Research (Wash D C)

January 2025

Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno 61200, Czech Republic.

Microrobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-CN is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-CN for these applications is still in its early stages.

View Article and Find Full Text PDF

Enhanced photocatalytic degradation of Rhodamine B using polyaniline-coated XTiO(X = Co, Ni) nanocomposites.

Sci Rep

January 2025

Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.

In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.

View Article and Find Full Text PDF

Effect of doping in TiO/chitosan composite on adsorptive-photocatalytic removal of gallic acid from water.

Chemosphere

January 2025

Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely professional University, Phagwara, Punjab, India. Electronic address:

Gallic acid (GA) has emerged as a low biodegradable and high acidity industrial effluent. Due to mutagenic and carcinogenic nature of GA, it becomes essential to remove it from wastewater. Different chemical, physical and biological methods are being used for this purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!