Volatile compounds and sensory characteristics of various instant teas produced from black tea.

Food Chem

TÜBİTAK Marmara Research Center, Food Institute, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey. Electronic address:

Published: March 2016

Various instant teas produced differently from black tea [freeze-dried instant tea (FDIT), spray-dried instant tea (SDIT), and decaffeinated instant tea (DCIT)], were compared for their differences in volatile compounds as well as descriptive sensory analysis (DSA). A total of 63 volatile compounds in all tea samples (eight aldehydes, ten alcohols, nine ketones, five esters, eight acids, ten terpenes/terpenoids, ten furans/furanones, two pyrroles, and one miscellaneous compound) were tentatively identified. Black tea, FDIT, SDIT, and DCIT contained 60, 55, 47, and 40 volatile compounds, respectively. Ten flavour attributes such as after taste, astringency, bitter, caramel-like, floral/sweet, green/grassy, hay-like, malty, roasty, and seaweed were identified. Intensities for a number of flavour attributes (except for caramel-like in SDIT and bitter and after taste in DCIT) were not significantly different (p>0.05) among tea samples. The present study suggests that instant teas can also be used as good alternative to black tea.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2015.08.051DOI Listing

Publication Analysis

Top Keywords

volatile compounds
16
black tea
16
instant teas
12
instant tea
12
tea
9
teas produced
8
tea fdit
8
tea samples
8
flavour attributes
8
instant
6

Similar Publications

Low-temperature catalytic oxidation of ethanol over doped nickel phosphates.

Environ Sci Pollut Res Int

January 2025

Laboratory of Coordination and Analytical Chemistry (LCCA), Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, Ben Maachou Road, B.P: 20, 24000, El Jadida, Morocco.

This work is focused on the synthesis and performance of Ni(PO)-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH-TPD, CO-TPD, and H-TPR to explain their performance.

View Article and Find Full Text PDF

Carbon dioxide-mediated catalytic pyrolysis of lignin in syngas production.

Int J Biol Macromol

January 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Kraft lignin (KL), a byproduct of the pulp and paper industry, is commonly combusted as a low-grade fuel. However, its high sulphur content results in the emission of sulphur oxides, which pose environmental hazards. This study explores a sustainable approach for the valorisation of waste KL into syngas via CO-mediated pyrolysis.

View Article and Find Full Text PDF

In order to investigate the impact of hot air (HA) treatment on the sugars and volatiles in postharvest nectarine fruit, nectarines were treated with HA at 40 °C for 4 h and stored at 1 °C for 35 days. Changes of sugars, free and glycosidically bound volatiles, β-glucosidase (β-Glu) activity, and the gene expression of UGT (UDP-glucosyltransferase) in nectarine fruit were determined. The results showed that compared with CK, HA treatment delayed the firmness decline of 48.

View Article and Find Full Text PDF

Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.

View Article and Find Full Text PDF

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!