A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2015.08.032DOI Listing

Publication Analysis

Top Keywords

ionic strength
24
buffer ionic
8
full factorial
8
type ionic
8
protein recovery
8
carbonate buffer
8
buffer
7
ionic
7
strength
6
quantitative qualitative
4

Similar Publications

The photopolymerization-induced microphase separation (photo-PIMS) process involving a reactive polymer block was implemented to fabricate nanostructured quasi-solid polymer electrolytes (QSPEs) for use in lithium metal batteries (LMBs). This innovative one-pot fabrication enhances interfacial properties in LMBs by enabling nanostructuring of QSPE directly onto the electrodes. This process also allows for customization of QSPE structural dimensions by tweaking the architecture and molar mass of poly[(oligo ethylene glycol) methyl ether methacrylate--styrene] (P(OEGMA--S)) macromolecular chain transfer agent.

View Article and Find Full Text PDF

Highly compressible lamellar graphene/cellulose/sodium alginate aerogel via bidirectional freeze-drying for flexible pressure sensor.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.

View Article and Find Full Text PDF

Encapsulation of astilbin in zein nanoparticles with fructo-oligosaccharides and caseinate as costabilizers: Formation, stability, bioavailability, and antioxidant capacity.

Int J Biol Macromol

January 2025

National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China. Electronic address:

Zein-based nanoparticles (NPs) have attracted considerable attention as potential delivery systems for bioactive compounds. However, their application has been limited by poor stability and redispersibility. In this study, we addressed these challenges by fabricating zein nanocarriers using branching structural fructo-oligosaccharides (P-FOS) and sodium caseinate (NaCas) as costabilizers.

View Article and Find Full Text PDF

Effect of the support alkyl chain nature in the functional properties of the immobilized lipases.

Enzyme Microb Technol

January 2025

Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, Madrid 28049, Spain. Electronic address:

Supports coated with amino-hexyl and amino octyl have been prepared from glyoxyl agarose beads and compared in their performance with octyl-agarose to immobilize lipases A and B from Candida antarctica (CALA and CALB). Immobilization courses were similar using all supports, but enzyme release was more difficult using the amino-alkyl supports suggesting a mixed interfacial activation/ionic exchange immobilization. The enzyme activity and specificity (using p-nitrophenyl propionate, triacetin and both isomers of methyl mandelate) greatly depended on the support.

View Article and Find Full Text PDF

Melatonin (MLT) is an indole derivative that exhibits hormone-like activities in plants, regulating multiple aspects of growth and development. Due to its role in mitigating oxidative stress and facilitating osmoprotectant accumulation, MLT enhances abiotic stress tolerance, although the pathways and metabolic mechanisms involved remain unclear despite being studied in various crops. This work aimed to investigate the changes elicited by the exogenous MLT application at different concentrations (10, 50, 150 μM) and its role in mitigating the salinity stress in Lactuca sativa L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!