In this study Ocimum basilicum L. (OB) and Ocimum tenuiflorum L. (OT) in vitro culture standardisation for increasing eugenol distribution, in comparison to their respective field grown parts was carried out. Eugenol was quantified using an optimised HPLC method and its relation with the total phenolic content (TPC) was measured. In vitro grown leaves and somatic embryos, of both OB and OT were found to contain similar quantities of eugenol (85μg/g approximately), higher than OB and OT field-grown leaves (30.2μg/g and 25.1μg/g respectively). It was also determined that in vitro grown leaves were richer in TPC than the field-grown intact organs. Results demonstrated the prominence of in vitro cultures for eugenol extraction. This study underlines that important food flavouring metabolites (e.g. vanillin, vanillic acids) might be produced, via the eugenol pathway, in Ocimum species that may be a good potential source of eugenol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2015.07.136DOI Listing

Publication Analysis

Top Keywords

ocimum basilicum
8
basilicum ocimum
8
ocimum tenuiflorum
8
tenuiflorum vitro
8
vitro culture
8
potential source
8
vitro grown
8
grown leaves
8
eugenol
6
ocimum
5

Similar Publications

Background/objectives: Hyperlipidemia is a serious risk factor for cardiovascular diseases and liver steatosis. In this work, we explored the effect of an herbal formula (CBF) containing immature pods and extracts on lipid metabolism disorders and lipoprotein-rich plasma (LRP) oxidation in mice.

Methods: The phenolic composition was determined using HPLC-DAD analysis.

View Article and Find Full Text PDF

Application of predictive modeling tools for the identification of Ocimum spp. herbal products.

Anal Bioanal Chem

January 2025

Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA.

Species identification of botanical products is a crucial aspect of research and regulatory compliance; however, botanical classification can be difficult, especially for morphologically similar species with overlapping genetic and metabolomic markers, like those in the genus Ocimum. Untargeted LC-MS metabolomics coupled with multivariate predictive modeling provides a potential avenue for improving herbal identity investigations, but the current dearth of reference materials for many botanicals limits the applicability of these approaches. This study investigated the potential of using greenhouse-grown authentic Ocimum to build predictive models for classifying commercially available Ocimum products.

View Article and Find Full Text PDF

Mineral and trace element analysis of non-conventional food plants using ICP OES and chemometric techniques.

Food Chem

January 2025

Group of Alternative Analytical Approaches (GAAA), Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-060 São Paulo State, Brazil; National Institute of Alternative Technologies for Detection Toxicological Assessment and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, 14800-060 São Paulo State, Brazil. Electronic address:

Non-conventional food plants (or non-conventional edible plants) have the potential to serve as an excellent nutritional alternative while promoting the circular economy. Given the nutritional potential of non-conventional food plants, this study aimed to investigate and determine the composition of these plants using inductively coupled plasma optical emission spectroscopy (ICP OES) combined with chemometric techniques. In this context, the following non-conventional food plant species were evaluated: serralha (Sonchus oleraceus), two species of ora-pro-nóbis, Pereskia grandifolia and Pereskia aculeata, peixinho (Nematanthus gregarius), alfavaca (Ocimum basilicum), taioba (Xanthosoma sagittifolium), capeba (Pothomorphe umbellata), tranchagem (Plantago major), and bardana (Arctium lappa).

View Article and Find Full Text PDF

Essential oil and aqueous extract of basil (Ocimum basilicum) in the diet of pacu (Piaractus mesopotamicus).

Braz J Biol

January 2025

Universidade Federal de Mato Grosso do Sul - UFMS, Faculdade de Medicina Veterinária e Zootecnia - FAMEZ, Campo Grande, MS, Brasil.

This study aimed to evaluate the effects of Ocimum basilicum supplementation in the diet for Piaractus mesopotamicus regarding productive performance, intestinal morphology, muscle residue, and hematological changes after simulated transport stress. Juvenile (23 g±0.08, n = 180) were stocked into 300-L tanks in three treatments and six replicates each: a control diet (not supplemented), a diet with 0.

View Article and Find Full Text PDF

Background: Homegardens (HGs) are well-time-honored traditional land use systems in small plots of land with purposely designed intricate structure and a mixture of planted vascular plants (VPs) for different purposes. Hence, the present study was initiated to investigate the ethnobotanical information of vascular plants of homegardens and their use, conservation and management practice by the people of Dawuro in southwestern Ethiopia.

Methods: A total of 162 farmer informants were selected and interviewed within a distance of < 2 km, 2-4 km and > 4 km between the natural forest and homegardens, and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!