Oxidative C-H Activation Approach to Pyridone and Isoquinolone through an Iron-Catalyzed Coupling of Amides with Alkynes.

Chem Asian J

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Published: February 2016

An iron catalyst combined with a mild organic oxidant promotes both C-H bond cleavage and C-N bond formation, and forms 2-pyridones and isoquinolones from an alkene- or arylamide and an internal alkyne, respectively. An unsymmetrical alkyne gives the pyridone derivative with high regioselectivity, this could be due to the sensitivity of the reaction to steric effects because of the compact size of iron.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201501095DOI Listing

Publication Analysis

Top Keywords

oxidative c-h
4
c-h activation
4
activation approach
4
approach pyridone
4
pyridone isoquinolone
4
isoquinolone iron-catalyzed
4
iron-catalyzed coupling
4
coupling amides
4
amides alkynes
4
alkynes iron
4

Similar Publications

Palladium-catalyzed intramolecular aerobic oxidative cross-coupling of BH/CH between -carborane and arenes.

Chem Sci

January 2025

Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China

An efficient Pd-catalyzed regioselective intramolecular aerobic oxidative dehydrocoupling of BH/CH between -carborane and arenes has been achieved with the construction of a series of five-, six- and seven-membered rings under mild reaction conditions. Control experiments indicate that B-H activation proceeds preferentially over the aryl C-H. These new polyarene-carborane conjugates have potential applications in materials as demonstrated by pyrene fused -carborane that exhibits unique dual-phase emission, intramolecular charge transfer (ICT), and aggregation-induced emission (AIE) properties.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC) is a simple and low-cost intervention that is thought to increase collateral blood flow through the vasodilatory effects of nitric oxide (NO) produced by the endothelium and red blood cells (RBCs). This study aims to investigate whether RIC affects RBC deformability and levels of NO and nitrite in patients with ischemic stroke.

Methods: This is a predefined substudy to the RESIST (Remote Ischemic Conditioning in Patients With Acute Stroke Trial) randomized clinical trial conducted in Denmark.

View Article and Find Full Text PDF

Methane (CH), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH has a low energy density of only 36 kJ L under ambient conditions, which is significantly lower than that of gasoline (. 34 MJ L).

View Article and Find Full Text PDF

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

Copper-dependent halogenase catalyses unactivated C-H bond functionalization.

Nature

January 2025

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.

Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp)-H bond. In recent years, metalloenzymes have been found to perform C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!