Background: In the current Ebola epidemic in Western Africa, many healthcare workers have become infected. Some of these have been medically evacuated to hospitals in Europe and the USA. These clinical experiences provide unique insights into the course of Ebola virus disease under optimized condition within high level isolation units.
Case Presentation: A 50-year-old Caucasian male physician contracted Ebola virus diseases in Sierra Leone and was medically evacuated to Italy. Few days after the admission the course of the illness was characterized by severe gastro-intestinal symptoms followed by respiratory failure, accompanied by pulmonary infiltration and high Ebola viral load in the bronchial aspirate and Plasmodium vivax co-infection. The patient received experimental antiviral therapy with favipiravir, convalescent plasma and ZMAb. Ebola viral load started to steadily decrease in the blood after ZMAb administration and became undetectable by day 19 after admission, while it persisted longer in urine samples. No temporal association was observed between viral load decay in plasma and administration of favipiravir. The patient completely recovered and was discharged 39 days after admission.
Conclusions: This is the first case of Ebola-related interstitial pneumonia documented by molecular testing of lung fluid specimens. This reports underlines the pivotal role of fluid replacement and advanced life support with mechanical ventilation in the management of patients with Ebola virus diseases respiratory failure. Beside our finding indicates a close temporal association between administration of cZMAb and Ebola virus clearance from blood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608352 | PMC |
http://dx.doi.org/10.1186/s12879-015-1169-4 | DOI Listing |
J Infect Public Health
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. Electronic address:
Immunology
January 2025
The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Many virus species, including Ebola virus, Marburg virus, SARS-CoV-2, dengue virus (DENV) and Zika virus (ZIKV), exploit CD209 and CD209L as alternative or attachment receptors for viral cis- or trans-infection. Thus, CD209 and CD209L may be critical targets for the development of therapeutic monoclonal blocking antibody drugs to disrupt the infection process caused by multiple viruses. Here, we produced a human chimeric monoclonal blocking antibody that simultaneously blocks CD209 and CD209L, namely 7-H7-B1.
View Article and Find Full Text PDFCan Commun Dis Rep
January 2025
Centre for Communicable Disease and Infection Control, Public Health Agency of Canada, Ottawa, ON.
Background: Ugandan health authorities declared an outbreak of Ebola disease (EBOD), caused by the Sudan virus, in September 2022. A rapid review was conducted to update the Public Health Agency of Canada's guidelines for infection prevention and control measures for EBOD in healthcare settings to prepare for potential introduction of cases.
Objective: Summarize the available evidence on personal protective equipment (PPE) use by healthcare workers (HCWs) to prevent exposure to and transmission of viral hemorrhagic fevers (VHFs), including Ebola virus.
Viruses
December 2024
Gilead Sciences, Inc., Foster City, CA 94404, USA.
Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.
View Article and Find Full Text PDFViruses
November 2024
Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!