A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergistic Effects of Oxygen on Phosphine and Ethyl Formate for the Control of Phthorimaea operculella (Lepidoptera: Gelechiidae). | LitMetric

Synergistic Effects of Oxygen on Phosphine and Ethyl Formate for the Control of Phthorimaea operculella (Lepidoptera: Gelechiidae).

J Econ Entomol

Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea.

Published: December 2015

Phosphine (PH3) and ethyl formate (EF) are two potentially powerful postharvest fumigant insecticides. We investigated the effectiveness of both PH3 and EF as fumigants at all developmental stages of the potato tuber moth Phthorimaea operculella Zeller, and we also studied the synergistic effects of these fumigants under controlled atmospheres of 50 and 80% oxygen (O2). The larval stage of P. operculella was the most susceptible to fumigation with PH3 at both 5°C and 20°C. All of the developmental stages showed greater susceptibility to PH3 at 20°C than at 5°C, whereas the susceptibility of adult P. operculella to this fumigant was not affected by temperature. The toxicity of EF did not differ with temperature for any of the P. operculella developmental stages. The atmospheric oxidation of PH3 increased the toxicity of this fumigant toward all developmental stages at both temperatures. In contrast, no differences in toxicity were observed for oxidized EF compared with EF alone at any developmental stage. In conclusion, using fumigation tests, we showed that atmospherically oxidized PH3 was much more effective against P. operculella than PH3 alone, demonstrating a synergistic effect for this fumigant and O2. Therefore, treatment with PH3 and high concentrations of O2, as described in this study, could be useful for managing the postharvest pest P. operculella.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/tov244DOI Listing

Publication Analysis

Top Keywords

developmental stages
16
synergistic effects
8
ethyl formate
8
phthorimaea operculella
8
ph3
8
operculella
7
developmental
5
effects oxygen
4
oxygen phosphine
4
phosphine ethyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!