Avermectins, such as eprinomectin (EPM), are antiparasitic drugs widely and globally used. There is undisputed evidence that they could be a threat for the terrestrial ecosystem. Despite their global use, data for avermectins behaviour and fate in soils are scarce. The objectives of this research were to conduct adsorption experiments in the soil to determine kinetics and isotherms as well as to explore the EPM adsorption mechanism. Accordingly, various models were employed to study the adsorption behaviour and kinetics as well as the adsorption mechanism of EPM in soils. The results showed that the degree of EPM adsorption to soils is determined by the soils' physicochemical properties and the EPM initial concentration. It is possible that dissolved EPM concentration will be higher in soils that contain low amounts of clay minerals and organic matter, resulting in higher toxicity risk for the soil biota and shallow groundwater aquifers contamination. The results of this study are crucial for impact assessment of EPM and in the design of environmental fate or ecotoxicological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.09.100DOI Listing

Publication Analysis

Top Keywords

epm adsorption
8
adsorption mechanism
8
epm
7
adsorption
6
soils
5
mobility pharmaceutical
4
pharmaceutical compounds
4
compounds terrestrial
4
terrestrial environment
4
environment adsorption
4

Similar Publications

Using first-principles density functional theory (DFT), this study examines the improved chemical catalytic performance and biochemical sensing capabilities of iron (Fe) and gold (Au) nanoclusters decorated flawless γ-graphyne (GPN) as nanocarriers for the Ertapenem (EPM) antibiotic drug, in contrast to pristine γ-graphyne. The evaluation of binding energy analysis, it has been noted that perfect GPN (-0.96 eV), Au-decorated GPN (-1.

View Article and Find Full Text PDF

On-site extraction of phenoxycarboxylic acid herbicides in environmental waters utilizing monolith-based in-tip microextraction technique.

J Chromatogr A

November 2024

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China. Electronic address:

On-site extraction plays a significant role in the reliable quantification of strong polar phenoxycarboxylic acid herbicides (PCAs) in aqueous samples. In current study, a new technique for the field sample preparation of PCAs was developed by means of three channels in-tip microextraction device (TCIM). To capture PCAs effectively, an extraction phase based on monolith (EPM) using vinylimidazole and divinylbenzene/ethylene dimethacrylate as monomer and cross-linkers, respectively, was in-situ synthesized in pipette tips.

View Article and Find Full Text PDF

Utilizing low-cost purple coneflower (Echniacea purpurea) marc for competitive sorption of Eu(III), Co(II) and Cs(I) radionuclides.

J Environ Radioact

May 2024

Nuclear Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Inshas, Cairo, 13759, Egypt. Electronic address:

Echinacea purpurea marc (EPM), a residual of echinacea herb after the extraction process, was used as a natural low-cost sorbent for competitive sorption of Eu(III), Co(II) and Cs(I) radionuclides. The EPM was ground to prepare it for use in the sorption process. The variables influencing the sorption process were assessed, including pH, contact time, concentrations of metal ions, and temperature.

View Article and Find Full Text PDF

Human enteric viruses are important etiological agents of waterborne diseases. Environmental waters are usually contaminated with low virus concentration requiring large concentration factors for effective detection by (RT)-qPCR. Low-pressure reverse osmosis is often used to remove water contaminants, but very few studies focused on the effective virus removal of reverse osmosis treatment with feed concentrations as close as possible to environmental concentrations and principally relied on theoretical virus removal.

View Article and Find Full Text PDF

Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!