A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanically inspired laser scribing of thin flexible glass. | LitMetric

Laser cutting of thin glass (<100  μm) has proven problematic. We describe an alternative laser scribing method that utilizes surface stress raisers. An ultrashort laser source is used to precisely pattern a plurality of aligned elliptical recesses on the glass. The apex of an ellipse concentrates applied tensile stresses. Depending on the elliptical dimensions, the stress concentration factor can be several tens of magnitude. The orientation of the ellipses defines a preferred scribing path. Tensile stress is applied orthogonally to the path and causes mode I fracture. The resulting scribe is of higher quality and strength than are possible with a full body laser cut. The optical setup is simple, low in cost, and compatible with future roll-to-roll manufacturing. The stress field around a stress raiser was analyzed using finite element method analysis. Consequently, the stress raiser process offers an alternative to other processes which employ high numerical aperture optics for thin glass scribing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.40.004811DOI Listing

Publication Analysis

Top Keywords

mechanically inspired
4
inspired laser
4
laser scribing
4
scribing thin
4
thin flexible
4
flexible glass
4
glass laser
4
laser cutting
4
cutting thin
4
thin glass
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!