Block co-polymer surfactants have been used for cleaning hydrogel medical devices that contact the body (e.g., contact lenses) because of their biocompatibility. This work examined the relationship between concentration and detergency of two non-ionic polymeric surfactants (Pluronic F127 and Triton X-100) for cleaning protein soil, with anionic surfactants (sodium dodecyl sulfate and sodium laureth sulfate) as positive controls. Surface plasmon resonance was used to quantify removal of simulated tear soil from self-assembled monolayer surfaces, and a microplate format was used to study the removal of fluorescently labeled soil proteins from contact lenses. While detergency increased as a function of concentration for anionic surfactants, it decreased with concentration for the two polymeric surfactants. The fact that the protein detergency of some non-ionic polymeric surfactants did not increase with concentration above the critical micelle concentration could have implications for optimizing the tradeoff between detergency and biocompatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2015.1094690 | DOI Listing |
Environ Technol
January 2025
Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.
View Article and Find Full Text PDFPLoS One
January 2025
Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
Background: To study the efficacy and safety of Polyethylene glycolated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) in the prevention of neutropenia during concurrent chemoradiotherapy for nasopharyngeal carcinoma (NPC).
Methods: This is a single-center, prospective, randomized controlled study conducted from June 1, 2021, to October 31, 2022 on patients diagnosed with locally advanced NPC. Participants were divided into an experimental group and a control group.
J Bone Joint Surg Am
January 2025
Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
Background: Early knee effusion is a common phenomenon after total knee arthroplasty (TKA), with potential clinical implications. Unlike traditional alloy knee prostheses, the polyetheretherketone (PEEK) knee system has radiographic transparency on magnetic resonance (MR) scans, which allows analysis of prosthetic knee effusion. We aimed to identify the distribution and volume of knee effusion after TKA with the PEEK prosthesis with use of MR imaging and to analyze whether dynamic changes in effusion were correlated with serum inflammatory marker changes and knee function recovery.
View Article and Find Full Text PDFJ Bone Joint Surg Am
January 2025
Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY.
Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).
Methods: MSSA and E.
Colloids Surf B Biointerfaces
December 2024
The National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark. Electronic address:
Within the deep lung, pulmonary surfactant coats the air-liquid interface at the surface of the alveoli. This complex mixture of amphiphilic molecules and proteins modifies the surface tension and mechanical properties of this interface to assist with breathing. In this study, we examine the effects on pulmonary surfactant function by two industrially used compounds composing surfactants and polymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!