Nuclear Oxidation of a Major Peroxidation DNA Adduct, M1dG, in the Genome.

Chem Res Toxicol

A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of †Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States.

Published: December 2015

Chronic inflammation results in increased production of reactive oxygen species (ROS), which can oxidize cellular molecules including lipids and DNA. Our laboratory has shown that 3-(2-deoxy-β-d-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) is the most abundant DNA adduct formed from the lipid peroxidation product, malondialdehyde, or the DNA peroxidation product, base propenal. M1dG is mutagenic in bacterial and mammalian cells and is repaired via the nucleotide excision repair system. Here, we report that M1dG levels in intact DNA were increased from basal levels of 1 adduct per 10(8) nucleotides to 2 adducts per 10(6) nucleotides following adenine propenal treatment of RKO, HEK293, or HepG2 cells. We also found that M1dG in genomic DNA was oxidized in a time-dependent fashion to a single product, 6-oxo-M1dG (to ∼ 5 adducts per 10(7) nucleotides), and that this oxidation correlated with a decline in M1dG levels. Investigations in RAW264.7 macrophages indicate the presence of high basal levels of M1dG (1 adduct per 10(6) nucleotides) and the endogenous formation of 6-oxo-M1dG. This is the first report of the production of 6-oxo-M1dG in genomic DNA in intact cells, and it has significant implications for understanding the role of inflammation in DNA damage, mutagenesis, and repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993022PMC
http://dx.doi.org/10.1021/acs.chemrestox.5b00340DOI Listing

Publication Analysis

Top Keywords

dna
8
dna adduct
8
peroxidation product
8
m1dg levels
8
basal levels
8
106 nucleotides
8
genomic dna
8
m1dg
7
nuclear oxidation
4
oxidation major
4

Similar Publications

: Major Depressive Disorder (MDD) is a prevalent and debilitating mental disorder that has been linked to hyperhomocysteinemia and folate deficiency. These conditions are influenced by the methylenetetrahydrofolate reductase () gene, which plays a crucial role in converting homocysteine to methionine and is essential for folate metabolism and neurotransmitter synthesis, including serotonin. : This study explored the association between and polymorphisms among Saudi MDD patients attending the Erada Complex for Mental Health and Erada Services outpatient clinic in Jeddah, Saudi Arabia.

View Article and Find Full Text PDF

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective.

Clin Rev Allergy Immunol

January 2025

Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.

View Article and Find Full Text PDF

Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.

View Article and Find Full Text PDF

Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!