Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus.

Environ Technol

b Chemistry of Natural and Microbial Products Department, Division of Pharmaceutical industries , National Research Centre, Giza , Egypt.

Published: November 2016

Biofiltration technology has been recognized as a promising biotechnology for treating the volatile organic compounds (VOCs) present in polluted air. This study aims to investigate the performance of a biofiltration system of Streptomyces griseus sp. DSM-40759 immobilized on activated carbon (PICA S23) towards the adsorption and degradation of toluene vapour as well as to regenerate the activated carbon in situ. The batch studies were performed using nutrient agar medium and basal salt medium (BSM) for microbial growth. Initially the pre-cultures were incubated at a temperature of 28°C on a rotary shaker at 150 rpm. After two days, the strain S. griseus DSM-40759 was immobilized on a known weight of activated carbon (12 g). The results of biofilter performance showed three different stages with a quick adsorption phase with approximately 95% of toluene removal after 70 min, a slow biotransformation phase by immobilized cells. In the later, the removal efficiency decreased significantly with the extension of time and reached 60% during this stage. Moreover, a final quick removal phase by the immobilized cells had an average removal efficiency of toluene around 95% after 500 min. The toluene degradation was found to be more than 84% after the second cycle and the biofilter was still capable of removing additional toluene. Thus, the results demonstrated the feasibility and reusability of a new biofilter system for toluene removal as well as extending the activated carbon's capacity and this could be a potential solution to reuse the activated carbon in industrial application.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2015.1107623DOI Listing

Publication Analysis

Top Keywords

activated carbon
16
biofiltration technology
8
polluted air
8
streptomyces griseus
8
griseus dsm-40759
8
dsm-40759 immobilized
8
toluene removal
8
phase immobilized
8
immobilized cells
8
removal efficiency
8

Similar Publications

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

Impact of carrier capacitance on Geobacter enrichment and direct interspecies electron transfer under anaerobic conditions.

Bioresour Technol

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China. Electronic address:

Direct interspecies electron transfer (DIET) enhances anaerobic digestion by facilitating electron exchange between electroactive bacteria and methanogenic archaea. While Geobacter species are recognized for donating electrons to methanogens via DIET, they are rarely detected in mixed microbial communities. This study examined various non-electrode biological carriers (zeolite, carbon cloth, activated carbon and biochar) to promote Geobacter cultivation under anaerobic conditions and identify pivotal factors influencing their symbiosis with methanogens.

View Article and Find Full Text PDF

The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.

View Article and Find Full Text PDF

This study unveils a novel property of polyaniline by establishing its catalytic activity in heterogeneous hydrogenation with molecular hydrogen. Polyaniline was activated by heat-treating at different temperatures in a hydrogen atmosphere. The sample treated at 300 °C exhibited the highest catalytic activity for ethylene hydrogenation in the gas phase at atmospheric pressure and for p-nitrotoluene or α-methylstyrene hydrogenation in the liquid phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!