We propose a new algorithm, called line integral alternating minimization (LIAM), for dual-energy X-ray CT image reconstruction. Instead of obtaining component images by minimizing the discrepancy between the data and the mean estimates, LIAM allows for a tunable discrepancy between the basis material projections and the basis sinograms. A parameter is introduced that controls the size of this discrepancy, and with this parameter the new algorithm can continuously go from a two-step approach to the joint estimation approach. LIAM alternates between iteratively updating the line integrals of the component images and reconstruction of the component images using an image iterative deblurring algorithm. An edge-preserving penalty function can be incorporated in the iterative deblurring step to decrease the roughness in component images. Images from both simulated and experimentally acquired sinograms from a clinical scanner were reconstructed by LIAM while varying the regularization parameters to identify good choices. The results from the dual-energy alternating minimization algorithm applied to the same data were used for comparison. Using a small fraction of the computation time of dual-energy alternating minimization, LIAM achieves better accuracy of the component images in the presence of Poisson noise for simulated data reconstruction and achieves the same level of accuracy for real data reconstruction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394417 | PMC |
http://dx.doi.org/10.1109/TMI.2015.2490658 | DOI Listing |
J Phys Chem A
January 2025
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.
View Article and Find Full Text PDFCan Assoc Radiol J
January 2025
Department of Medicine, McGill University, Montreal, QC, Canada.
Radiologists and other diagnostic imaging specialists play a pivotal role in the management of osteoporosis, a highly prevalent condition of reduced bone strength and increased fracture risk. Bone mineral density (BMD) measurement with dual-energy X-ray absorptiometry (DXA) is a critical component of identifying individuals at high risk for fracture. Strategies to prevent fractures are consolidated in the Osteoporosis Canada clinical practice guideline which was updated in 2023.
View Article and Find Full Text PDFJ Clin Med
December 2024
IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy.
Olfactory dysfunction (OD) is an underestimated symptom in multiple sclerosis (MS). Multiple factors may play a role in the OD reported by MS patients, such as ongoing inflammation in the central nervous system (CNS), damage to the olfactory bulbs due to demyelination, and the presence of plaques in brain areas associated with the olfactory system. Indeed, neuroimaging studies in MS have shown a clear association of the OD with the number and activity of MS-related plaques in frontal and temporal brain regions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Satellite-ground communication is a critical component in the global communication system, significantly contributing to environmental monitoring, radio and television broadcasting, aerospace operations, and other domains. However, the technology encounters challenges in data transmission efficiency, due to the drastic alterations in the communication channel caused by the rapid movement of satellites. In comparison to traditional transmission methods, semantic communication (SemCom) technology enhances transmission efficiency by comprehending and leveraging the intrinsic meaning of information, making it ideal for image transmission in satellite communications.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Ophthalmic Instrumentation Development Lab, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Wilmer 233, 600 N. Wolfe St., Baltimore, MD 21287, USA.
Signal amplitudes obtained from retinal scanning depend on numerous factors. Working with polarized light to interrogate the retina, large parts of which are birefringent, is even more prone to artifacts. This article demonstrates the necessity of using normalization when working with retinal birefringence scanning signals in polarization-sensitive ophthalmic instruments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!