AI Article Synopsis

Article Abstract

Colorectal cancer (CRC) has become the third most common cancer in developed countries. Each year more and more people die from CRC. CRC is also one of the most effectively studied topics in recent years. It has been found that the key phenomena in CRC development are genetic and inflammatory processes. Well-known genetic bases for the carcinogenesis of CRC include chromosomal changes characteristic of the chromosomal instability pathway which correlates with specific and well-defined genetic alterations (such as APC, K-RAS, DCC and p53) and genomic instability characteristics for the mutator pathway focused on KRAS and BRAF mutations. Recent studies have highlighted the impact of inflammation in CRC, especially elevated levels of pro-inflammatory cytokines. Among important risk factors of colon carcinogenesis are colorectal polyps, which are currently the subject of intense research. Recent studies have shown that different adenomas are characterized by different pathways of carcinogenesis as well as diverse COX-2 expression in various polyps. Understanding the mechanism of inflammatory processes in CRC parallel to basic genetic alterations might allow for effective and targeted treatment.

Download full-text PDF

Source
http://dx.doi.org/10.17219/acem/31239DOI Listing

Publication Analysis

Top Keywords

inflammatory processes
12
genetic alterations
8
crc
7
genetic
5
large bowel
4
bowel genetic
4
genetic background
4
background inflammatory
4
processes carcinogenesis--systematic
4
carcinogenesis--systematic review
4

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.

View Article and Find Full Text PDF

Nanomaterials-Induced Pyroptosis: Advancing Novel Therapeutic Pathways in Nanomedicine.

Small Methods

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.

Pyroptosis, a form of programmed cell death characterized by cell lysis and inflammation, has significant implications for disease treatment. Nanomaterials (NMs), with their unique physicochemical properties, can precisely modulate pyroptosis, offering novel and intelligent therapeutic strategies for cancer, infectious diseases, and chronic inflammatory conditions with targeted activation and reduced systemic toxicity. This review explores the mechanisms by which NMs regulate pyroptosis, comparing molecular and NM inducers, and examines the role of intrinsic properties such as size, shape, surface charge, and chemical composition in these processes.

View Article and Find Full Text PDF

Orthobiologic injections including platelet-rich plasma (PRP) and cell-based injections are becoming increasingly popular. Evidence suggests that these therapies can be effective in certain situations. The efficacy of these injections may be more dependent on the quality of the injectate, which given their autologous nature, may be dependent on lifestyle choices like exercise, diet, and supplements.

View Article and Find Full Text PDF

Enhancing Diabetic Oral Wound Healing with miR-132 Delivered Through Tetrahedral DNA Nanostructures.

Small

January 2025

Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China.

Oral mucosal injuries are commonly caused by factors such as trauma, infection, or inflammation, especially in diabetic patients where healing is difficult and significantly affects quality of life. In this study, a nanocarrier system based on DNA tetrahedrons (TDN) is developed, which serve as ideal vectors due to their excellent intracellular uptake and drug delivery capabilities. By efficiently delivering miR132 into cells, the proliferation and migration of human oral mucosal fibroblasts (HOMFs) and human umbilical vein endothelial cells (HUVECs) are regulated, along with the modulation of inflammation and antioxidant processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!