Copper(II) Complexes of Cyclams Containing Nitrophenyl Substituents: Push-Pull Behavior and Scorpionate Coordination of the Nitro Group.

Inorg Chem

Centro Singular de Investigación en Química Biolóxica e Materiales Moleculares (CIQUS) and Departamento de Química Inorgánica, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain.

Published: November 2015

The three nitrophenyl-cyclam derivatives (nitrocyclams): 1-(4-nitrophenyl)-1,4,8,11-tetraazacyclotetradecane (2), 1-(2-nitrophenyl)-1,4,8,11-tetraazacyclotetradecane (3), and 1-(2,4-dinitrophenyl)-1,4,8,11-tetraazacyclotetradecane (4), in an MeCN solution, specifically incorporate the Cu(II) ion according to an irreversible process signaled by disappearance of the yellow color for a concentration c < 1 × 10(-4) M and by a yellow-to-red color change for c ≥ 1 × 10(-3), and must be considered efficient and specific dosimeters of copper(II) salts. When present in the ortho position of the nitrophenyl substituent, the -NO2 group coordinates the Cu(II) according to a scorpionate mode, while the metallocyclam system exhibits a trans-I configuration. In an MeCN solution the red trans-I-[Cu(II)(3)](2+) and trans-I-[Cu(II)(4)](2+) scorpionate complexes slowly convert into the violet trans-III scorpionate complexes. Kinetic aspects of the trans-I-to-trans-III configurational rearrangement were investigated in detail for the [Cu(II)(4)](2+) system. In particular, the conversion is spectacularly accelerated by catalytic amounts of Cl(-), NCO(-), and F(-). While for Cl(-) and NCO(-) the effect can be associated with the capability of the anion to stabilize through coordination a possible dissociative intermediate, the amazingly powerful effect of F(-) must be related to the preliminary deprotonation of one N-H fragment of the macrocycle, driven by the formation of the HF2(-) ion. Most of the metal complex species studied in solution were isolated in a crystalline form, and their molecular structures were elucidated through X-ray diffraction studies. This study documents the first examples of effective metal coordination by the nitro group.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b01273DOI Listing

Publication Analysis

Top Keywords

coordination nitro
8
nitro group
8
mecn solution
8
scorpionate complexes
8
cl- nco-
8
copperii complexes
4
complexes cyclams
4
cyclams nitrophenyl
4
nitrophenyl substituents
4
substituents push-pull
4

Similar Publications

Organic compounds present promising options for sustainable zinc battery electrodes. Nevertheless, the electrochemical properties of current organic electrodes still lag behind those of their inorganic counterparts. In this study, nitro groups were incorporated into pyrene-4, 5, 9, 10-tetraone (PTO), resulting in an elevated discharge voltage due to their strong electron-withdrawing capabilities.

View Article and Find Full Text PDF

The cyclic triangular complex - silver (I) 4-nitro-3,5-bis(trifluoromethyl)pyrazolate (Agpz) with super π-acidity shows great potential in adsorptive desulfurization (ADS) as a novel adsorbent, however, it fails to work well in the continue flow adsorption study. In order to improve its dynamic adsorption performance, a composite has been prepared by mixing Agpz and multilayer graphene (MG) in methanol. Based on the results of characterization by FT-IR, XPS, SEM, and so on, the optimal mass ratio of Agpz:MG in the synthesis is 0.

View Article and Find Full Text PDF

Purpose: Due to the extensive use of radiation in various fields, such as food safety, sterilizing surgical materials, and medical diagnostics, it is essential to minimize radiation exposure for both patients and healthcare professionals, even at low doses. To meet this requirement, a composite film has been developed using polyvinyl alcohol (PVA) polymer and nitro blue tetrazolium (NBT) dye to measure low radiation doses effectively.

Methods: Various concentrations of NBT dye (ranging from 0.

View Article and Find Full Text PDF

The Schiff base metal complexes containing the transition metal ions Co(II), Ni(II) and Cu(II) were synthesized using their nitrate and acetate salts. An octahedral environment encircling metal complexes has been demonstrated by the findings of multiple spectroscopic approaches that were employed to demonstrate the structure of the metal complexes. The Coats-Redfern method of thermal analysis was employed to carry out the kinetic and thermodynamic calculations.

View Article and Find Full Text PDF

Crystal structures and photophysical properties of mono- and dinuclear Zn complexes flanked by tri-ethyl-ammonium.

Acta Crystallogr E Crystallogr Commun

October 2024

Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.

Two new zinc(II) complexes, tri-ethyl-ammonium di-chlorido-[2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-olato]zinc(II), (CHN){Zn(CHNO)Cl] (), and bis-(tri-ethyl-ammonium) {2,2'-[1,4-phenyl-enebis(nitrilo-methyl-idyne)]diphenolato}bis-[di-chlorido-zinc(II)], (CHN)[Zn(CHNO)Cl] (), were synthesized and their structures were determined using ESI-MS spectrometry, H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-ol () and ,'-bis-(2-hy-droxy-benzyl-idene)benzene-1,4-di-amine () were deprotonated by tri-ethyl-amine, forming the counter-ion EtNH, which inter-acts an N-H⋯O hydrogen bond with the ligand. The Zn atoms have a distorted trigonal-pyramidal () and distorted tetra-hedral () geometries with a coord-ination number of four, coordinating with the ligands N and O atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!