The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608996PMC
http://dx.doi.org/10.1016/j.chom.2015.09.007DOI Listing

Publication Analysis

Top Keywords

merozoite surface
12
plasmodium falciparum
8
surface protein
8
msp1
8
protein msp1
8
msp1 activates
8
parasite egress
8
host erythrocyte
8
erythrocyte cytoskeleton
8
egress
6

Similar Publications

SURFINs protein family expressed on surface of both infected red blood cell and merozoite surface making them as interesting vaccine candidate for erythrocytic stage of malaria infection. In this study, we analyze genetic variation of Pfsurf4.1 gene, copy number variation, and frequency of SURFIN4.

View Article and Find Full Text PDF

Very low prevalence of Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene deletion in the Brazil, Venezuela, and Guyana tri-border.

Sci Rep

January 2025

Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou (IRR), Fundação Oswaldo Cruz (FIOCRUZ), Minas Gerais, Brazil.

Rapid Diagnostic Tests (RDTs) have been an important diagnostic tool for detecting P. falciparum malaria in resource-limited settings. Most tests are designed to detect the Histidine-rich Protein 2 (HRP2).

View Article and Find Full Text PDF

The antimalarial activity of transdermal N-89 mediated by inhibiting ERC gene expression in P. Berghei-infected mice.

Parasitol Int

December 2024

Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan. Electronic address:

Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients.

View Article and Find Full Text PDF

Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!