Unlabelled: Human respiratory syncytial virus (RSV) is an important pathogen causing acute lower respiratory tract disease in children. The RSV attachment glycoprotein (G) is not required for infection, as G-null RSV replicates efficiently in several cell lines. Our laboratory previously reported that the viral fusion (F) protein is a determinant of strain-dependent pathogenesis. Here, we hypothesized that virus dependence on G is determined by the strain specificity of F. We generated recombinant viruses expressing G and F, or null for G, from the laboratory A2 strain (Katushka RSV-A2GA2F [kRSV-A2GA2F] and kRSV-GstopA2F) or the clinical isolate A2001/2-20 (kRSV-2-20G2-20F and kRSV-Gstop2-20F). We quantified the virus cell binding, entry kinetics, infectivity, and growth kinetics of these four recombinant viruses in vitro. RSV expressing the 2-20 G protein exhibited the greatest binding activity. Compared to the parental viruses expressing G and F, removal of 2-20 G had more deleterious effects on binding, entry, infectivity, and growth than removal of A2 G. Overall, RSV expressing 2-20 F had a high dependence on G for binding, entry, and infection.

Importance: RSV is the leading cause of childhood acute respiratory disease requiring hospitalization. As with other paramyxoviruses, two major RSV surface viral glycoproteins, the G attachment protein and the F fusion protein, mediate virus binding and subsequent membrane fusion, respectively. Previous work on the RSV A2 prototypical strain demonstrated that the G protein is functionally dispensable for in vitro replication. This is in contrast to other paramyxoviruses that require attachment protein function as a prerequisite for fusion. We reevaluated this requirement for RSV using G and F proteins from clinical isolate 2-20. Compared to the laboratory A2 strain, the G protein from 2-20 had greater contributions to virus binding, entry, infectivity, and in vitro growth kinetics. Thus, the clinical isolate 2-20 F protein function depended more on its G protein, suggesting that RSV has a higher dependence on G than previously thought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702574PMC
http://dx.doi.org/10.1128/JVI.02140-15DOI Listing

Publication Analysis

Top Keywords

binding entry
16
fusion protein
12
clinical isolate
12
protein
10
rsv
10
respiratory syncytial
8
syncytial virus
8
attachment glycoprotein
8
recombinant viruses
8
viruses expressing
8

Similar Publications

Lassa fever (LF), a viral hemorrhagic fever disease with a case fatality rate that can be over 20% among hospitalized LF patients, is endemic to many West African countries. Currently, no vaccines or therapies are specifically licensed to prevent or treat LF, hence the significance of developing therapeutics against the mammarenavirus Lassa virus (LASV), the causative agent of LF. We used in silico docking approaches to investigate the binding affinities of 2015 existing drugs to LASV proteins known to play critical roles in the formation and activity of the virus ribonucleoprotein complex (vRNP) responsible for directing replication and transcription of the viral genome.

View Article and Find Full Text PDF

COVID-19, caused by SARS-CoV-2, has presented formidable challenges to global health since its emergence in late 2019. While primarily known for respiratory symptoms, it can also affect the ocular surface. This review summarizes the effects of SARS-CoV-2 on ocular surface immunity and inflammation, focusing on infection mechanisms, immune responses, and clinical manifestations.

View Article and Find Full Text PDF

Host RNA-Binding Proteins as Regulators of HIV-1 Replication.

Viruses

December 2024

Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.

RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs.

View Article and Find Full Text PDF

Establishment of a Yeast Two-Hybrid-Based High-Throughput Screening Model for Selection of SARS-CoV-2 Spike-ACE2 Interaction Inhibitors.

Int J Mol Sci

January 2025

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.

The recent coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has exerted considerable impact on global health. To prepare for rapidly mutating viruses and for the forthcoming pandemic, effective therapies targeting the critical stages of the viral life cycle need to be developed. Viruses are dependent on the interaction between the receptor-binding domain (RBD) of the viral Spike (S) protein (S-RBD) and the angiotensin-converting enzyme 2 (ACE2) receptor to efficiently establish infection and the following replicate.

View Article and Find Full Text PDF

Dissecting the Binding Affinity of Anti-SARS-CoV-2 Compounds to Human Transmembrane Protease, Serine 2: A Computational Study.

Int J Mol Sci

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China.

The human transmembrane protease, serine 2 (TMPRSS2), essential for SARS-CoV-2 entry, is a key antiviral target. Here, we computationally profiled the TMPRSS2-binding affinities of 15 antiviral compounds. Molecular dynamics (MD) simulations for the docked complexes revealed that three compounds exited the substrate-binding cavity (SBC), suggesting noncompetitive inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!