The present study investigated the type 1 cannabinoid receptor (CB1R) as a potential candidate to mediate the homeostatic responses triggered by 24 h of water deprivation, which constitutes primarily a hydroelectrolytic challenge and also significantly impacts energy homeostasis. The present results demonstrated for the first time that CB1R mRNA expression is increased in the hypothalamus of water-deprived (WD) rats. Furthermore, the administration of ACEA, a CB1R selective agonist, potentiated WD-induced dipsogenic effect, whereas AM251, a CB1R antagonist, attenuated not only water but also salt intake in response to WD. In parallel with the modulation of thirst and salt appetite, we confirmed that CB1Rs are essential for the development of appropriated neuroendocrine responses. Although the administration of ACEA or AM251 did not produce any effects on WD-induced arginine vasopressin (AVP) secretion, oxytocin (OXT) plasma concentrations were significantly decreased in WD rats treated with ACEA. At the genomic level, ACEA significantly decreased AVP and OXT mRNA expression in the hypothalamus of WD rats, whereas AM251 potentiated both basal and WD-induced stimulatory effects on the transcription of AVP and OXT genes. In addition, we showed that water deprivation alone upregulated proopiomelanocortin, Agouti-related peptide, melanin-concentrating hormone, and orexin A mRNA levels in the hypothalamus, and that CB1Rs regulate main central peptidergic pathways controlling food intake, being that most of these effects were also significantly influenced by the hydration status. In conclusion, the present study demonstrated that CB1Rs participate in the homeostatic responses regulating fluid balance and energy homeostasis during water deprivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00536.2014 | DOI Listing |
There are no therapies for reversing chronic organ degeneration. Non-healing degenerative wounds are thought to be irreparable, in part, by the inability of the tissue to respond to reparative stimuli. As such, treatments are typically aimed at slowing tissue degeneration or replacing cells through transplantation.
View Article and Find Full Text PDFNeurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunc-tional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth.
View Article and Find Full Text PDFThe bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT).
View Article and Find Full Text PDFCureus
December 2024
Department of Medical Affairs, Eris Lifesciences Ltd., Ahmedabad, IND.
Background Polycystic ovary syndrome (PCOS) poses a significant health concern among reproductive-aged women and is characterized by ovarian dysfunction, hyperandrogenism, and insulin resistance. This study aims to assess the efficacy and safety of metformin and myo-inositol combination therapy compared to metformin monotherapy in patients with PCOS. Materials and methods This was a phase III, double-blind, randomized controlled clinical trial.
View Article and Find Full Text PDFSci Rep
January 2025
Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China.
As glyphosate's application becomes increasingly widespread across the globe, its potential adverse effects on humans have garnered growing concerns. Little evidence has revealed the associations between glyphosate and glucose homeostasis. A total of 2094 individuals were recruited from the NHANES 2013-2018.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!