Apoptosis of Oligodendrocytes during Early Development Delays Myelination and Impairs Subsequent Responses to Demyelination.

J Neurosci

Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC 20037

Published: October 2015

Unlabelled: During mammalian development, myelin-forming oligodendrocytes are generated and axons ensheathed according to a tightly regulated sequence of events. Excess premyelinating oligodendrocytes are eliminated by apoptosis and the timing of the onset of myelination in any specific CNS region is highly reproducible. Although the developing CNS recovers more effectively than the adult CNS from similar insults, it is unknown whether early loss of oligodendrocyte lineage cells leads to long-term functional deficits. To directly assess whether the loss of oligodendrocytes during early postnatal spinal cord development impacted oligodendrogenesis, myelination, and remyelination, transgenic mouse lines were generated in which a modified caspase-9 molecule allowed spatial and temporal control of the apoptotic pathway specifically in mature, myelin basic protein expressing oligodendrocytes (MBP-iCP9). Activating apoptosis in MBP(+) cells of the developing spinal cord during the first postnatal week inhibited myelination. This inhibition was transient, and the levels of myelination largely returned to normal after 2 weeks. Despite robust developmental plasticity, MBP-iCP9-induced oligodendrocyte apoptosis compromised the rate and extent of adult remyelination. Remyelination failure correlated with a truncated proliferative response of oligodendrocyte progenitor cells, suggesting that depleting the oligodendrocyte pool during critical developmental periods compromises the regenerative response to subsequent demyelinating lesions.

Significance Statement: This manuscript demonstrates that early insults leading to oligodendrocyte apoptosis result in the impairment of recovery from demyelinating diseases in the adult. These studies begin to provide an initial understanding of the potential failure of recovery in insults, such as periventricular leukomalacia and multiple sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604236PMC
http://dx.doi.org/10.1523/JNEUROSCI.1706-15.2015DOI Listing

Publication Analysis

Top Keywords

oligodendrocytes early
8
spinal cord
8
oligodendrocyte apoptosis
8
apoptosis
5
myelination
5
oligodendrocyte
5
apoptosis oligodendrocytes
4
early
4
early development
4
development delays
4

Similar Publications

The Role of Artificial Intelligence in Predicting Optic Neuritis Subtypes From Ocular Fundus Photographs.

J Neuroophthalmol

December 2024

Division of Ophthalmology (EB-S, AS, AA-A, AS-B, DW, SS, FC), Department of Surgery, University of Calgary, Calgary, Canada; Department of Biomedical Engineering (CN), University of Calgary, Calgary, Canada; Departments of Neurology (LBDL) and Ophthalmology (LBDL), University of Michigan, Ann Arbor, Michigan; and Department of Clinical Neurosciences (SS, FC), University of Calgary, Calgary, Canada.

Background: Optic neuritis (ON) is a complex clinical syndrome that has diverse etiologies and treatments based on its subtypes. Notably, ON associated with multiple sclerosis (MS ON) has a good prognosis for recovery irrespective of treatment, whereas ON associated with other conditions including neuromyelitis optica spectrum disorders or myelin oligodendrocyte glycoprotein antibody-associated disease is often associated with less favorable outcomes. Delay in treatment of these non-MS ON subtypes can lead to irreversible vision loss.

View Article and Find Full Text PDF

Neurons located in the layer II of the entorhinal cortex (ECII) are the primary site of pathological tau accumulation and neurodegeneration at preclinical stages of Alzheimer's disease (AD). Exploring the alterations that underlie the early degeneration of these cells is essential to develop therapies that delay disease onset. Here we performed cell-type specific profiling of the EC at the onset of human AD neuropathology.

View Article and Find Full Text PDF

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare cause of NORSE. We describe the case of a young girl who presented with NORSE associated with MOGAD along with a systematic review of all cases of NORSE associated with MOGAD till date. Seizures associated with MOGAD are usually associated with good outcome but can occasionally be catastrophic and non-responsive to conventional therapies.

View Article and Find Full Text PDF

Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms.

Biochim Biophys Acta Mol Basis Dis

January 2025

Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.

Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases.

View Article and Find Full Text PDF

IDH-mutant low-grade gliomas (LGGs) are slow-growing brain tumors that frequently progress to aggressive high-grade gliomas that have dismal outcomes. In a recent study, Wu and colleagues provide critical insights into the mechanisms underlying malignant progression by analyzing single-cell gene expression and chromatin accessibility across different tumor grades. Their findings support a two-phase model: in early stages, tumors are primarily driven by oligodendrocyte precursor-like cells and epigenetic alterations that silence tumor suppressors like CDKN2A and activate oncogenes such as PDGFRA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!