Unlabelled: Sprinkled throughout the genome are a million regulatory sequences called transcriptional enhancers that activate gene promoters in the right cells, at the right time. Enhancers endow the brain with its incredible diversity of cell types and also translate neural activity into gene induction. Thanks to rapid advances in genomic technologies, it is now possible to identify thousands of enhancers rapidly, test their transcriptional function en masse, and address their neurobiological functions via genome editing. Enhancers also promise to be a great technological opportunity for neuroscience, offering the potential for cell-type-specific genetic labeling and manipulation without the need for transgenesis. The objective of this review and the accompanying 2015 SfN mini-symposium is to highlight the use of new and emerging genomic technologies to probe enhancer function in the nervous system.

Significance Statement: Transcriptional enhancers turn on genes in the right cells, at the right time. Enhancers are also the genomic sequences that encode the incredible diversity of cell types in the brain and enable the brain to turn genes on in response to new experiences. New technology enables enhancers to be found and manipulated. The study of enhancers promises to inform our understanding of brain development and function. The application of enhancer technology holds promise in accelerating basic neuroscience research and enabling gene therapies to be targeted to specific cell types in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604220PMC
http://dx.doi.org/10.1523/JNEUROSCI.2622-15.2015DOI Listing

Publication Analysis

Top Keywords

transcriptional enhancers
12
cell types
12
enhancers
9
cells time
8
time enhancers
8
incredible diversity
8
diversity cell
8
genomic technologies
8
turn genes
8
types brain
8

Similar Publications

Exploring the interplay between enhancer-promoter interactions and transcription.

Curr Opin Genet Dev

January 2025

Department of Biochemistry and Molecular Biophysics, Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Enhancers in metazoan genomes are known to activate their target genes across both short and long genomic distances. Recent advances in chromosome conformation capture assays and single-cell imaging have shed light on the underlying chromatin contacts and dynamics. Yet the relationship between 3D physical enhancer-promoter (E-P) interactions and transcriptional activation remains unresolved.

View Article and Find Full Text PDF

Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation.

Cell Rep

January 2025

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:

Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.

View Article and Find Full Text PDF

Background: Cervical cancer disparities persist among minoritized women due to infrequent screening and poor follow-up. Structural and psychosocial barriers to following up with colposcopy are problematic for minoritized women. Evidence-based interventions using patient navigation and tailored telephone counseling, including the Tailored Communication for Cervical Cancer Risk (TC3), have modestly improved colposcopy attendance.

View Article and Find Full Text PDF

Transgenic mice and organoid models, such as three-dimensional tumoroid cultures, have emerged as powerful tools for investigating cancer development and targeted therapies. Yet, the extent to which these preclinical models recapitulate the cellular identity of heterogeneous malignancies, like neuroblastoma (NB), remains to be validated. Here, we characterized the transcriptional landscape of TH-MYCN tumors by single-cell RNA sequencing (scRNA-seq) and developed ex vivo tumoroids.

View Article and Find Full Text PDF

Delayed wound closure is a significant hallmark associated with diabetes. A previous study from our laboratory identified decreased levels of Dicer and miRNAs together with altered levels of wound healing genes in the wounded tissues of diabetic rats. Comprehensive regulators of these wound healing genes mapped onto the PRC2 (polycomb repressive complex 2) complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!