Intracellular bacteria are poorly responsive to antibiotic treatment. Pharmacological studies are thus needed to determine which antibiotics are most potent or effective against intracellular bacteria as well as to explore the reasons for poor bacterial responsiveness. An in vitro pharmacodynamic model is described, consisting of (1) phagocytosis of pre-opsonized bacteria by eukaryotic cells; (2) elimination of non-internalized bacteria with gentamicin; (3) incubation of infected cells with antibiotics; and (4) determination of surviving bacteria by viable cell counting and normalization of the counts based on sample protein content.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-2854-5_13DOI Listing

Publication Analysis

Top Keywords

intracellular bacteria
8
bacteria
5
vitro models
4
models study
4
study intracellular
4
intracellular activity
4
activity antibiotics
4
antibiotics intracellular
4
bacteria responsive
4
responsive antibiotic
4

Similar Publications

Chia Derived Peptides Affecting Bacterial Membrane and DNA: Insights from Staphylococcus aureus and Escherichia coli Studies.

Plant Foods Hum Nutr

December 2024

Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.

The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.

View Article and Find Full Text PDF

Background: A precise observation is that the cervix's solid tumors possess hypoxic regions where the oxygen concentration drops below 1.5%. Hypoxia negatively impacts the host's immune system and significantly diminishes the effectiveness of several treatments, including radiotherapy and chemotherapy.

View Article and Find Full Text PDF

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

Omics-based analysis of mitochondrial dysfunction and BBB integrity in post-COVID-19 sequelae.

Sci Rep

December 2024

Cell and Developmental Biology Laboratory, Research and Development Cell, PIMSR, Parul University, Vadodara, Gujarat, 391760, India.

The SARS-CoV-2 virus that resulted in the COVID-19 pandemic has been implicated in a range of neurological issues, such as encephalopathy, stroke, and cognitive decline. Although the precise mechanism causing these issues is unknown, mounting evidence shows that blood-brain barrier (BBB) disruption is probable2 a major factor. The integrity of the blood-brain barrier (BBB), a highly selective barrier that divides the brain from the systemic circulation, is crucial for preserving normal brain function.

View Article and Find Full Text PDF

In recent decades, drug resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), have emerged that threaten public health. Although M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!