Developing effective alternative approaches for disinfesting bed bugs from residential spaces requires a balance between obtaining complete insect mortality, while minimizing costs and energy consumption. One method of disinfestation is the application of lethal high temperatures directly to rooms and contents within a structure (termed whole-room heat treatments). However, temperature and time parameters for efficacy in whole-room heat treatments are unknown given the slower rate of temperature increase and the probable variability of end-point temperatures within a treated room. The objective of these experiments was to explore requirements to produce maximum mortality from heat exposure using conditions that are more characteristic of whole-room heat treatments. Bed bugs were exposed in an acute lethal temperature (LTemp) trial, or time trials at sub-acute lethal temperatures (LTime). The lethal temperature (LTemp99) for adults was 48.3 °C, while LTemp99 for eggs was 54.8 °C. Adult bed bugs exposed to 45 °C had a LTime99 of 94.8 min, while eggs survived 7 h at 45 °C and only 71.5 min at 48 °C. We discuss differences in exposure methodologies, potential reasons why bed bugs can withstand higher temperatures and future directions for research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553552 | PMC |
http://dx.doi.org/10.3390/insects2030412 | DOI Listing |
PLoS One
January 2025
Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.
Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.
View Article and Find Full Text PDFEnviron Health
November 2024
Natural Resources Defense Council, 20 N Wacker Dr #1600, Chicago, IL, 60606, USA.
Sci Rep
November 2024
Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
Over the last two decades, an increase in bed bug infestations has been observed worldwide. Although their definitive role as vectors of infectious agents has not yet been demonstrated, bed bugs have a direct effect on human health through dermatological reactions to their bites and psychological disorders linked to domestic infestations. In this study, the effectiveness of using MALDI-TOF MS to correctly identify these two bed bug species at immature stages was assessed, as well as it effectiveness as discriminating between the immature stages (IS) of C.
View Article and Find Full Text PDFPest Manag Sci
November 2024
Syngenta AG, Basel, Switzerland.
Background: Isoxazolines inhibit γ-aminobutyric acid chloride channels in insects and acarids by binding to postsynaptic receptors. This prevents chloride influx, leading to depolarization/hyperexcitation, paralysis, and death. Here, we evaluated the potential utility of a novel isoxazoline, isocycloseram, against several urban insect pests.
View Article and Find Full Text PDFInsects
September 2024
Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-0046, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!