Multisite HPV16/18 Vaccine Efficacy Against Cervical, Anal, and Oral HPV Infection.

J Natl Cancer Inst

Division of Cancer Epidemiology, and Genetics (DCB, ARK, MS, SW, MS, AH) and Center for Cancer Research (DRL, JTS), National Cancer Institute, NIH, Bethesda, MD; Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, Costa Rica (RH, ACR, CP, SJ, PG); Early Detection and Prevention Section, International Agency for Research on Cancer, Lyon, France (RH); DDL Diagnostic Laboratory, Voorburg, the Netherlands (WQ, LS); Information Management Systems, Rockville, MD (JS).

Published: January 2016

Background: Previous Costa Rica Vaccine Trial (CVT) reports separately demonstrated vaccine efficacy against HPV16 and HPV18 (HPV16/18) infections at the cervical, anal, and oral regions; however, the combined overall multisite efficacy (protection at all three sites) and vaccine efficacy among women infected with HPV16 or HPV18 prior to vaccination are less known.

Methods: Women age 18 to 25 years from the CVT were randomly assigned to the HPV16/18 vaccine (Cervarix) or a hepatitis A vaccine. Cervical, oral, and anal specimens were collected at the four-year follow-up visit from 4186 women. Multisite and single-site vaccine efficacies (VEs) and 95% confidence intervals (CIs) were computed for one-time detection of point prevalent HPV16/18 in the cervical, anal, and oral regions four years after vaccination. All statistical tests were two-sided.

Results: The multisite woman-level vaccine efficacy was highest among "naïve" women (HPV16/18 seronegative and cervical HPV high-risk DNA negative at vaccination) (vaccine efficacy = 83.5%, 95% CI = 72.1% to 90.8%). Multisite woman-level vaccine efficacy was also demonstrated among women with evidence of a pre-enrollment HPV16 or HPV18 infection (seropositive for HPV16 and/or HPV18 but cervical HPV16/18 DNA negative at vaccination) (vaccine efficacy = 57.8%, 95% CI = 34.4% to 73.4%), but not in those with cervical HPV16 and/or HPV18 DNA at vaccination (anal/oral HPV16/18 VE = 25.3%, 95% CI = -40.4% to 61.1%). Concordant HPV16/18 infections at two or three sites were also less common in HPV16/18-infected women in the HPV vaccine vs control arm (7.4% vs 30.4%, P < .001).

Conclusions: This study found high multisite vaccine efficacy among "naïve" women and also suggests the vaccine may provide protection against HPV16/18 infections at one or more anatomic sites among some women infected with these types prior to HPV16/18 vaccination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862406PMC
http://dx.doi.org/10.1093/jnci/djv302DOI Listing

Publication Analysis

Top Keywords

vaccine efficacy
32
vaccine
14
cervical anal
12
anal oral
12
hpv16 hpv18
12
hpv16/18 infections
12
efficacy
9
hpv16/18
9
hpv16/18 vaccine
8
oral regions
8

Similar Publications

A subunit vaccine Ag85A-LpqH focusing on humoral immunity provides substantial protection against tuberculosis in mice.

iScience

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

The importance of humoral immunity in combating TB has gained extensive recognition. In this study, a subunit vaccine named Ag85A-LpqH (AL) was prepared by fusing the antigen Ag85A proved to induce robust T cell immune responses, and LpqH was shown to produce protective antibodies. The prevention and BCG prime-boost mouse models were established to test the vaccine efficacy.

View Article and Find Full Text PDF

Reducing off-target expression of mRNA therapeutics and vaccines in the liver with microRNA binding sites.

Mol Ther Methods Clin Dev

March 2025

Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA.

Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression.

View Article and Find Full Text PDF

In recent years, there have been notable strides in developing mRNA vaccines, resulting in the creation of potent immunizations against diverse diseases. This review examines the most recent advancements in this field, focusing on their implications for future vaccine development. The pursuit of heightened vaccine efficacy is investigated through cutting-edge methods in adjuvant selection, delivery system optimization, and antigen selection.

View Article and Find Full Text PDF

Background: In Italy, the anti-Human Papillomavirus (HPV) vaccination campaign began in 2008. To date, despite the effectiveness and safety of HPV vaccines, coverage among Italian adolescents is still suboptimal. Evidence suggests that different factors could influence parents' choices regarding their children's vaccination uptake.

View Article and Find Full Text PDF

Bacteriophage M13KE as a Nanoparticle Platform to Display and Deliver a Pathogenic Epitope: Development of an Effective Porcine Epidemic Diarrhoea Virus Vaccine.

Microb Pathog

January 2025

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China. Electronic address:

Porcine epidemic diarrhoea virus (PEDV) is a porcine enteric coronavirus, outbreaks and epidemics of which have caused huge economic losses to the livestock industry. The disadvantage of existing PEDV vaccines is that the unstable efficacy and high cost limit their widespread use. Therefore, there is an urgent need to develop a recombinant transgenic vaccine candidate for PEDV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!