Working memory (WM) is a system for the online storage of information. An emerging view is that neuronal oscillations coordinate the cellular assemblies that code the content of WM. In line with this view, previous work has demonstrated that oscillatory activity in the alpha band (8-12 Hz) plays a role in WM maintenance, but the exact contributions of this activity have remained unclear. Here, we used an inverted spatial encoding model in combination with electroencephalography (EEG) to test whether the topographic distribution of alpha-band activity tracks spatial representations held in WM. Participants in three experiments performed spatial WM tasks that required them to remember the precise angular location of a sample stimulus for 1,000-1,750 ms. Across all three experiments, we found that the topographic distribution of alpha-band activity tracked the specific location that was held in WM. Evoked (i.e., activity phase-locked to stimulus onset) and total (i.e., activity regardless of phase) power across a range of low-frequency bands transiently tracked the location of the sample stimulus following stimulus onset. However, only total power in the alpha band tracked the content of spatial WM throughout the memory delay period, which enabled reconstruction of location-selective channel tuning functions (CTFs). These findings demonstrate that alpha-band activity is directly related to the coding of spatial representations held in WM and provide a promising method for tracking the content of this online memory system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4760461 | PMC |
http://dx.doi.org/10.1152/jn.00860.2015 | DOI Listing |
Front Syst Neurosci
January 2025
International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.
This study examines the impact of positive and negative feedback on recall of past decisions, focusing on behavioral performance and electrophysiological (EEG) responses. Participants completed a decision-making task involving 10 real-life scenarios, each followed by immediate positive or negative feedback. In a recall phase, participants' accuracy (ACC), errors (ERRs), and response times (RTs) were recorded alongside EEG data to analyze brain activity patterns related to recall.
View Article and Find Full Text PDFLang Cogn Neurosci
July 2024
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA.
The engagement of predictive mechanisms during language comprehension can facilitate processing and modulate neural oscillatory activity. These modulations include alpha-band activity decreases prior to expected words, reflecting anticipatory preparation, and frontal theta-band activity following unexpected words, reflecting engagement of cognitive control. It remains unknown how these oscillatory dynamics are impacted by aging.
View Article and Find Full Text PDFeNeuro
January 2025
Research School of Psychology, Australian National University, 0200, Australia.
Inner speech refers to the silent production of language in one's mind. As a purely mental action without obvious physical manifestations, inner speech has been notoriously difficult to quantify. Inner speech is thought to be closely related to overt speech.
View Article and Find Full Text PDFAppetite
January 2025
Department of Life Science and the Zelman Neuroscience Center, Ben-Gurion University, Beer Sheba, Israel.
Purpose: Behavioral and neurobiological abnormalities in addiction and obesity have led to the theory of food addiction in obesity (FAOB) and brain-behavior association studies. Transcranial magnetic stimulation (TMS) studies and treats various brain disorders. Cortico-cortical paired associative stimulation TMS protocol, in which left lateral prefrontal cortex (LPFC) stimulation follows right LPFC stimulation, can reduce emotional reactivity to visual triggers and modulate prefrontal asymmetry in healthy adults.
View Article and Find Full Text PDFArch Rehabil Res Clin Transl
December 2024
Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center (KUMC), Kansas City, KS.
Objective: To investigate the effects of sensory reweighting on postural control and cortical activity in individuals with Parkinson's disease (PD) compared to age-matched controls using a virtual reality sensory organization test (VR-SOT).
Design: Cross-sectional pilot study.
Setting: University research laboratory.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!